import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import gradio as gr import spaces model_id = "meta-llama/Llama-Guard-3-8B-INT8" device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.bfloat16 quantization_config = BitsAndBytesConfig(load_in_8bit=True) def load_model(): tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=dtype, device_map="auto", quantization_config=quantization_config, low_cpu_mem_usage=True ) return tokenizer, model tokenizer, model = load_model() @spaces.GPU def moderate(user_input, assistant_response): chat = [ {"role": "user", "content": user_input}, {"role": "assistant", "content": assistant_response}, ] input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device) with torch.no_grad(): output = model.generate( input_ids=input_ids, max_new_tokens=200, pad_token_id=tokenizer.eos_token_id, do_sample=False ) result = tokenizer.decode(output[0], skip_special_tokens=True) result = result.split(assistant_response)[-1].strip() is_safe = "safe" in result.lower() categories = [] if not is_safe and "categories:" in result: categories = [cat.strip() for cat in result.split("categories:")[1].split(",") if cat.strip()] return { "is_safe": "Safe" if is_safe else "Unsafe", "categories": ", ".join(categories) if categories else "None", "raw_output": result } iface = gr.Interface( fn=moderate, inputs=[ gr.Textbox(lines=3, label="User Input"), gr.Textbox(lines=3, label="Assistant Response") ], outputs=[ gr.Textbox(label="Safety Status"), gr.Textbox(label="Violated Categories"), gr.Textbox(label="Raw Output") ], title="Llama Guard Moderation", description="Enter a user input and an assistant response to check for content moderation." ) if __name__ == "__main__": iface.launch()