import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import gradio as gr import spaces huggingface_token = os.getenv('HUGGINGFACE_TOKEN') if not huggingface_token: raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") model_id = "meta-llama/Llama-Guard-3-8B-INT8" dtype = torch.bfloat16 quantization_config = BitsAndBytesConfig(load_in_8bit=True) def parse_llama_guard_output(result): # "" 以降の部分を抽出 safety_assessment = result.split("")[-1].strip() # 行ごとに分割して処理 lines = [line.strip().lower() for line in safety_assessment.split('\n') if line.strip()] if not lines: return "Error", "No valid output", safety_assessment # "safe" または "unsafe" を探す safety_status = next((line for line in lines if line in ['safe', 'unsafe']), None) if safety_status == 'safe': return "Safe", "None", safety_assessment elif safety_status == 'unsafe': # "unsafe" の次の行を違反カテゴリーとして扱う violated_categories = next((lines[i+1] for i, line in enumerate(lines) if line == 'unsafe' and i+1 < len(lines)), "Unspecified") return "Unsafe", violated_categories, safety_assessment else: return "Error", f"Invalid output: {safety_status}", safety_assessment @spaces.GPU def moderate(user_input, assistant_response): device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=dtype, device_map="auto", quantization_config=quantization_config, token=huggingface_token, low_cpu_mem_usage=True ) chat = [ {"role": "user", "content": user_input}, {"role": "assistant", "content": assistant_response}, ] input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device) with torch.no_grad(): output = model.generate( input_ids=input_ids, max_new_tokens=200, pad_token_id=tokenizer.eos_token_id, do_sample=False ) result = tokenizer.decode(output[0], skip_special_tokens=True) return parse_llama_guard_output(result) iface = gr.Interface( fn=moderate, inputs=[ gr.Textbox(lines=3, label="User Input"), gr.Textbox(lines=3, label="Assistant Response") ], outputs=[ gr.Textbox(label="Safety Status"), gr.Textbox(label="Violated Categories"), gr.Textbox(label="Raw Output") ], title="Llama Guard Moderation", description="Enter a user input and an assistant response to check for content moderation." ) if __name__ == "__main__": iface.launch()