Spaces:
Running
on
A10G
Running
on
A10G
File size: 15,866 Bytes
320e465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import math
from functools import reduce
import torch
import torch.nn as nn
import torch.nn.functional as F
class SoftSplit(nn.Module):
def __init__(self, channel, hidden, kernel_size, stride, padding):
super(SoftSplit, self).__init__()
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.t2t = nn.Unfold(kernel_size=kernel_size,
stride=stride,
padding=padding)
c_in = reduce((lambda x, y: x * y), kernel_size) * channel
self.embedding = nn.Linear(c_in, hidden)
def forward(self, x, b, output_size):
f_h = int((output_size[0] + 2 * self.padding[0] -
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
f_w = int((output_size[1] + 2 * self.padding[1] -
(self.kernel_size[1] - 1) - 1) / self.stride[1] + 1)
feat = self.t2t(x)
feat = feat.permute(0, 2, 1)
# feat shape [b*t, num_vec, ks*ks*c]
feat = self.embedding(feat)
# feat shape after embedding [b, t*num_vec, hidden]
feat = feat.view(b, -1, f_h, f_w, feat.size(2))
return feat
class SoftComp(nn.Module):
def __init__(self, channel, hidden, kernel_size, stride, padding):
super(SoftComp, self).__init__()
self.relu = nn.LeakyReLU(0.2, inplace=True)
c_out = reduce((lambda x, y: x * y), kernel_size) * channel
self.embedding = nn.Linear(hidden, c_out)
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.bias_conv = nn.Conv2d(channel,
channel,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x, t, output_size):
b_, _, _, _, c_ = x.shape
x = x.view(b_, -1, c_)
feat = self.embedding(x)
b, _, c = feat.size()
feat = feat.view(b * t, -1, c).permute(0, 2, 1)
feat = F.fold(feat,
output_size=output_size,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding)
feat = self.bias_conv(feat)
return feat
class FusionFeedForward(nn.Module):
def __init__(self, dim, hidden_dim=1960, t2t_params=None):
super(FusionFeedForward, self).__init__()
# We set hidden_dim as a default to 1960
self.fc1 = nn.Sequential(nn.Linear(dim, hidden_dim))
self.fc2 = nn.Sequential(nn.GELU(), nn.Linear(hidden_dim, dim))
assert t2t_params is not None
self.t2t_params = t2t_params
self.kernel_shape = reduce((lambda x, y: x * y), t2t_params['kernel_size']) # 49
def forward(self, x, output_size):
n_vecs = 1
for i, d in enumerate(self.t2t_params['kernel_size']):
n_vecs *= int((output_size[i] + 2 * self.t2t_params['padding'][i] -
(d - 1) - 1) / self.t2t_params['stride'][i] + 1)
x = self.fc1(x)
b, n, c = x.size()
normalizer = x.new_ones(b, n, self.kernel_shape).view(-1, n_vecs, self.kernel_shape).permute(0, 2, 1)
normalizer = F.fold(normalizer,
output_size=output_size,
kernel_size=self.t2t_params['kernel_size'],
padding=self.t2t_params['padding'],
stride=self.t2t_params['stride'])
x = F.fold(x.view(-1, n_vecs, c).permute(0, 2, 1),
output_size=output_size,
kernel_size=self.t2t_params['kernel_size'],
padding=self.t2t_params['padding'],
stride=self.t2t_params['stride'])
x = F.unfold(x / normalizer,
kernel_size=self.t2t_params['kernel_size'],
padding=self.t2t_params['padding'],
stride=self.t2t_params['stride']).permute(
0, 2, 1).contiguous().view(b, n, c)
x = self.fc2(x)
return x
def window_partition(x, window_size, n_head):
"""
Args:
x: shape is (B, T, H, W, C)
window_size (tuple[int]): window size
Returns:
windows: (B, num_windows_h, num_windows_w, n_head, T, window_size, window_size, C//n_head)
"""
B, T, H, W, C = x.shape
x = x.view(B, T, H // window_size[0], window_size[0], W // window_size[1], window_size[1], n_head, C//n_head)
windows = x.permute(0, 2, 4, 6, 1, 3, 5, 7).contiguous()
return windows
class SparseWindowAttention(nn.Module):
def __init__(self, dim, n_head, window_size, pool_size=(4,4), qkv_bias=True, attn_drop=0., proj_drop=0.,
pooling_token=True):
super().__init__()
assert dim % n_head == 0
# key, query, value projections for all heads
self.key = nn.Linear(dim, dim, qkv_bias)
self.query = nn.Linear(dim, dim, qkv_bias)
self.value = nn.Linear(dim, dim, qkv_bias)
# regularization
self.attn_drop = nn.Dropout(attn_drop)
self.proj_drop = nn.Dropout(proj_drop)
# output projection
self.proj = nn.Linear(dim, dim)
self.n_head = n_head
self.window_size = window_size
self.pooling_token = pooling_token
if self.pooling_token:
ks, stride = pool_size, pool_size
self.pool_layer = nn.Conv2d(dim, dim, kernel_size=ks, stride=stride, padding=(0, 0), groups=dim)
self.pool_layer.weight.data.fill_(1. / (pool_size[0] * pool_size[1]))
self.pool_layer.bias.data.fill_(0)
# self.expand_size = tuple(i // 2 for i in window_size)
self.expand_size = tuple((i + 1) // 2 for i in window_size)
if any(i > 0 for i in self.expand_size):
# get mask for rolled k and rolled v
mask_tl = torch.ones(self.window_size[0], self.window_size[1])
mask_tl[:-self.expand_size[0], :-self.expand_size[1]] = 0
mask_tr = torch.ones(self.window_size[0], self.window_size[1])
mask_tr[:-self.expand_size[0], self.expand_size[1]:] = 0
mask_bl = torch.ones(self.window_size[0], self.window_size[1])
mask_bl[self.expand_size[0]:, :-self.expand_size[1]] = 0
mask_br = torch.ones(self.window_size[0], self.window_size[1])
mask_br[self.expand_size[0]:, self.expand_size[1]:] = 0
masrool_k = torch.stack((mask_tl, mask_tr, mask_bl, mask_br), 0).flatten(0)
self.register_buffer("valid_ind_rolled", masrool_k.nonzero(as_tuple=False).view(-1))
self.max_pool = nn.MaxPool2d(window_size, window_size, (0, 0))
def forward(self, x, mask=None, T_ind=None, attn_mask=None):
b, t, h, w, c = x.shape # 20 36
w_h, w_w = self.window_size[0], self.window_size[1]
c_head = c // self.n_head
n_wh = math.ceil(h / self.window_size[0])
n_ww = math.ceil(w / self.window_size[1])
new_h = n_wh * self.window_size[0] # 20
new_w = n_ww * self.window_size[1] # 36
pad_r = new_w - w
pad_b = new_h - h
# reverse order
if pad_r > 0 or pad_b > 0:
x = F.pad(x,(0, 0, 0, pad_r, 0, pad_b, 0, 0), mode='constant', value=0)
mask = F.pad(mask,(0, 0, 0, pad_r, 0, pad_b, 0, 0), mode='constant', value=0)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q = self.query(x)
k = self.key(x)
v = self.value(x)
win_q = window_partition(q.contiguous(), self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head)
win_k = window_partition(k.contiguous(), self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head)
win_v = window_partition(v.contiguous(), self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head)
# roll_k and roll_v
if any(i > 0 for i in self.expand_size):
(k_tl, v_tl) = map(lambda a: torch.roll(a, shifts=(-self.expand_size[0], -self.expand_size[1]), dims=(2, 3)), (k, v))
(k_tr, v_tr) = map(lambda a: torch.roll(a, shifts=(-self.expand_size[0], self.expand_size[1]), dims=(2, 3)), (k, v))
(k_bl, v_bl) = map(lambda a: torch.roll(a, shifts=(self.expand_size[0], -self.expand_size[1]), dims=(2, 3)), (k, v))
(k_br, v_br) = map(lambda a: torch.roll(a, shifts=(self.expand_size[0], self.expand_size[1]), dims=(2, 3)), (k, v))
(k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows) = map(
lambda a: window_partition(a, self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head),
(k_tl, k_tr, k_bl, k_br))
(v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows) = map(
lambda a: window_partition(a, self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head),
(v_tl, v_tr, v_bl, v_br))
rool_k = torch.cat((k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows), 4).contiguous()
rool_v = torch.cat((v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows), 4).contiguous() # [b, n_wh*n_ww, n_head, t, w_h*w_w, c_head]
# mask out tokens in current window
rool_k = rool_k[:, :, :, :, self.valid_ind_rolled]
rool_v = rool_v[:, :, :, :, self.valid_ind_rolled]
roll_N = rool_k.shape[4]
rool_k = rool_k.view(b, n_wh*n_ww, self.n_head, t, roll_N, c // self.n_head)
rool_v = rool_v.view(b, n_wh*n_ww, self.n_head, t, roll_N, c // self.n_head)
win_k = torch.cat((win_k, rool_k), dim=4)
win_v = torch.cat((win_v, rool_v), dim=4)
else:
win_k = win_k
win_v = win_v
# pool_k and pool_v
if self.pooling_token:
pool_x = self.pool_layer(x.view(b*t, new_h, new_w, c).permute(0,3,1,2))
_, _, p_h, p_w = pool_x.shape
pool_x = pool_x.permute(0,2,3,1).view(b, t, p_h, p_w, c)
# pool_k
pool_k = self.key(pool_x).unsqueeze(1).repeat(1, n_wh*n_ww, 1, 1, 1, 1) # [b, n_wh*n_ww, t, p_h, p_w, c]
pool_k = pool_k.view(b, n_wh*n_ww, t, p_h, p_w, self.n_head, c_head).permute(0,1,5,2,3,4,6)
pool_k = pool_k.contiguous().view(b, n_wh*n_ww, self.n_head, t, p_h*p_w, c_head)
win_k = torch.cat((win_k, pool_k), dim=4)
# pool_v
pool_v = self.value(pool_x).unsqueeze(1).repeat(1, n_wh*n_ww, 1, 1, 1, 1) # [b, n_wh*n_ww, t, p_h, p_w, c]
pool_v = pool_v.view(b, n_wh*n_ww, t, p_h, p_w, self.n_head, c_head).permute(0,1,5,2,3,4,6)
pool_v = pool_v.contiguous().view(b, n_wh*n_ww, self.n_head, t, p_h*p_w, c_head)
win_v = torch.cat((win_v, pool_v), dim=4)
# [b, n_wh*n_ww, n_head, t, w_h*w_w, c_head]
out = torch.zeros_like(win_q)
l_t = mask.size(1)
mask = self.max_pool(mask.view(b * l_t, new_h, new_w))
mask = mask.view(b, l_t, n_wh*n_ww)
mask = torch.sum(mask, dim=1) # [b, n_wh*n_ww]
for i in range(win_q.shape[0]):
### For masked windows
mask_ind_i = mask[i].nonzero(as_tuple=False).view(-1)
# mask out quary in current window
# [b, n_wh*n_ww, n_head, t, w_h*w_w, c_head]
mask_n = len(mask_ind_i)
if mask_n > 0:
win_q_t = win_q[i, mask_ind_i].view(mask_n, self.n_head, t*w_h*w_w, c_head)
win_k_t = win_k[i, mask_ind_i]
win_v_t = win_v[i, mask_ind_i]
# mask out key and value
if T_ind is not None:
# key [n_wh*n_ww, n_head, t, w_h*w_w, c_head]
win_k_t = win_k_t[:, :, T_ind.view(-1)].view(mask_n, self.n_head, -1, c_head)
# value
win_v_t = win_v_t[:, :, T_ind.view(-1)].view(mask_n, self.n_head, -1, c_head)
else:
win_k_t = win_k_t.view(n_wh*n_ww, self.n_head, t*w_h*w_w, c_head)
win_v_t = win_v_t.view(n_wh*n_ww, self.n_head, t*w_h*w_w, c_head)
att_t = (win_q_t @ win_k_t.transpose(-2, -1)) * (1.0 / math.sqrt(win_q_t.size(-1)))
att_t = F.softmax(att_t, dim=-1)
att_t = self.attn_drop(att_t)
y_t = att_t @ win_v_t
out[i, mask_ind_i] = y_t.view(-1, self.n_head, t, w_h*w_w, c_head)
### For unmasked windows
unmask_ind_i = (mask[i] == 0).nonzero(as_tuple=False).view(-1)
# mask out quary in current window
# [b, n_wh*n_ww, n_head, t, w_h*w_w, c_head]
win_q_s = win_q[i, unmask_ind_i]
win_k_s = win_k[i, unmask_ind_i, :, :, :w_h*w_w]
win_v_s = win_v[i, unmask_ind_i, :, :, :w_h*w_w]
att_s = (win_q_s @ win_k_s.transpose(-2, -1)) * (1.0 / math.sqrt(win_q_s.size(-1)))
att_s = F.softmax(att_s, dim=-1)
att_s = self.attn_drop(att_s)
y_s = att_s @ win_v_s
out[i, unmask_ind_i] = y_s
# re-assemble all head outputs side by side
out = out.view(b, n_wh, n_ww, self.n_head, t, w_h, w_w, c_head)
out = out.permute(0, 4, 1, 5, 2, 6, 3, 7).contiguous().view(b, t, new_h, new_w, c)
if pad_r > 0 or pad_b > 0:
out = out[:, :, :h, :w, :]
# output projection
out = self.proj_drop(self.proj(out))
return out
class TemporalSparseTransformer(nn.Module):
def __init__(self, dim, n_head, window_size, pool_size,
norm_layer=nn.LayerNorm, t2t_params=None):
super().__init__()
self.window_size = window_size
self.attention = SparseWindowAttention(dim, n_head, window_size, pool_size)
self.norm1 = norm_layer(dim)
self.norm2 = norm_layer(dim)
self.mlp = FusionFeedForward(dim, t2t_params=t2t_params)
def forward(self, x, fold_x_size, mask=None, T_ind=None):
"""
Args:
x: image tokens, shape [B T H W C]
fold_x_size: fold feature size, shape [60 108]
mask: mask tokens, shape [B T H W 1]
Returns:
out_tokens: shape [B T H W C]
"""
B, T, H, W, C = x.shape # 20 36
shortcut = x
x = self.norm1(x)
att_x = self.attention(x, mask, T_ind)
# FFN
x = shortcut + att_x
y = self.norm2(x)
x = x + self.mlp(y.view(B, T * H * W, C), fold_x_size).view(B, T, H, W, C)
return x
class TemporalSparseTransformerBlock(nn.Module):
def __init__(self, dim, n_head, window_size, pool_size, depths, t2t_params=None):
super().__init__()
blocks = []
for i in range(depths):
blocks.append(
TemporalSparseTransformer(dim, n_head, window_size, pool_size, t2t_params=t2t_params)
)
self.transformer = nn.Sequential(*blocks)
self.depths = depths
def forward(self, x, fold_x_size, l_mask=None, t_dilation=2):
"""
Args:
x: image tokens, shape [B T H W C]
fold_x_size: fold feature size, shape [60 108]
l_mask: local mask tokens, shape [B T H W 1]
Returns:
out_tokens: shape [B T H W C]
"""
assert self.depths % t_dilation == 0, 'wrong t_dilation input.'
T = x.size(1)
T_ind = [torch.arange(i, T, t_dilation) for i in range(t_dilation)] * (self.depths // t_dilation)
for i in range(0, self.depths):
x = self.transformer[i](x, fold_x_size, l_mask, T_ind[i])
return x
|