File size: 13,611 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e939fd5
 
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f89268
5fa813d
 
 
 
 
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# -*- coding: utf-8 -*-
import os
import sys
import cv2
import numpy as np
import scipy.ndimage
from PIL import Image
from tqdm import tqdm

import torch
import torchvision

from model.modules.flow_comp_raft import RAFT_bi
from model.recurrent_flow_completion import RecurrentFlowCompleteNet
from model.propainter import InpaintGenerator
from core.utils import to_tensors

import warnings
warnings.filterwarnings("ignore")


def imwrite(img, file_path, params=None, auto_mkdir=True):
	if auto_mkdir:
		dir_name = os.path.abspath(os.path.dirname(file_path))
		os.makedirs(dir_name, exist_ok=True)
	return cv2.imwrite(file_path, img, params)


def resize_frames(frames, size=None):    
	if size is not None:
		out_size = size
		process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
		frames = [f.resize(process_size) for f in frames]
	else:
		out_size = frames[0].size
		process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
		if not out_size == process_size:
			frames = [f.resize(process_size) for f in frames]
		
	return frames, process_size, out_size


def read_frame_from_videos(frame_root):
	if frame_root.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
		video_name = os.path.basename(frame_root)[:-4]
		vframes, aframes, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec') # RGB
		frames = list(vframes.numpy())
		frames = [Image.fromarray(f) for f in frames]
		fps = info['video_fps']
	else:
		video_name = os.path.basename(frame_root)
		frames = []
		fr_lst = sorted(os.listdir(frame_root))
		for fr in fr_lst:
			frame = cv2.imread(os.path.join(frame_root, fr))
			frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
			frames.append(frame)
		fps = None
	size = frames[0].size

	return frames, fps, size, video_name


def binary_mask(mask, th=0.1):
	mask[mask>th] = 1
	mask[mask<=th] = 0
	return mask
  

def extrapolation(video_ori, scale):
	"""Prepares the data for video outpainting.
	"""
	nFrame = len(video_ori)
	imgW, imgH = video_ori[0].size

	# Defines new FOV.
	imgH_extr = int(scale[0] * imgH)
	imgW_extr = int(scale[1] * imgW)
	imgH_extr = imgH_extr - imgH_extr % 8
	imgW_extr = imgW_extr - imgW_extr % 8
	H_start = int((imgH_extr - imgH) / 2)
	W_start = int((imgW_extr - imgW) / 2)

	# Extrapolates the FOV for video.
	frames = []
	for v in video_ori:
		frame = np.zeros(((imgH_extr, imgW_extr, 3)), dtype=np.uint8)
		frame[H_start: H_start + imgH, W_start: W_start + imgW, :] = v
		frames.append(Image.fromarray(frame))

	# Generates the mask for missing region.
	masks_dilated = []
	flow_masks = []
	
	dilate_h = 4 if H_start > 10 else 0
	dilate_w = 4 if W_start > 10 else 0
	mask = np.ones(((imgH_extr, imgW_extr)), dtype=np.uint8)
	
	mask[H_start+dilate_h: H_start+imgH-dilate_h, 
		 W_start+dilate_w: W_start+imgW-dilate_w] = 0
	flow_masks.append(Image.fromarray(mask * 255))

	mask[H_start: H_start+imgH, W_start: W_start+imgW] = 0
	masks_dilated.append(Image.fromarray(mask * 255))
  
	flow_masks = flow_masks * nFrame
	masks_dilated = masks_dilated * nFrame
	
	return frames, flow_masks, masks_dilated, (imgW_extr, imgH_extr)


def get_ref_index(mid_neighbor_id, neighbor_ids, length, ref_stride=10, ref_num=-1):
	ref_index = []
	if ref_num == -1:
		for i in range(0, length, ref_stride):
			if i not in neighbor_ids:
				ref_index.append(i)
	else:
		start_idx = max(0, mid_neighbor_id - ref_stride * (ref_num // 2))
		end_idx = min(length, mid_neighbor_id + ref_stride * (ref_num // 2))
		for i in range(start_idx, end_idx, ref_stride):
			if i not in neighbor_ids:
				if len(ref_index) > ref_num:
					break
				ref_index.append(i)
	return ref_index


def read_mask_demo(masks, length, size, flow_mask_dilates=8, mask_dilates=5):
		masks_img = []
		masks_dilated = []
		flow_masks = []
			
		for mp in masks:
			masks_img.append(Image.fromarray(mp.astype('uint8')))
			
		for mask_img in masks_img:
			if size is not None:
				mask_img = mask_img.resize(size, Image.NEAREST)
			mask_img = np.array(mask_img.convert('L'))

			# Dilate 8 pixel so that all known pixel is trustworthy
			if flow_mask_dilates > 0:
				flow_mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=flow_mask_dilates).astype(np.uint8)
			else:
				flow_mask_img = binary_mask(mask_img).astype(np.uint8)
			
			flow_masks.append(Image.fromarray(flow_mask_img * 255))
			
			if mask_dilates > 0:
				mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=mask_dilates).astype(np.uint8)
			else:
				mask_img = binary_mask(mask_img).astype(np.uint8)
			masks_dilated.append(Image.fromarray(mask_img * 255))
		
		if len(masks_img) == 1:
			flow_masks = flow_masks * length
			masks_dilated = masks_dilated * length

		return flow_masks, masks_dilated


class ProInpainter:
	def __init__(self, propainter_checkpoint, raft_checkpoint, flow_completion_checkpoint, device="cuda:0", use_half=True):
		self.device = device
		self.use_half = use_half
		if self.device == torch.device('cpu'):
					self.use_half = False

		##############################################
		# set up RAFT and flow competition model
		##############################################
		self.fix_raft = RAFT_bi(raft_checkpoint, self.device)

		self.fix_flow_complete = RecurrentFlowCompleteNet(flow_completion_checkpoint)
		for p in self.fix_flow_complete.parameters():
			p.requires_grad = False
		self.fix_flow_complete.to(self.device)
		self.fix_flow_complete.eval()

		##############################################
		# set up ProPainter model
		##############################################
		self.model = InpaintGenerator(model_path=propainter_checkpoint).to(self.device)
		self.model.eval()

		if self.use_half:
			self.fix_flow_complete = self.fix_flow_complete.half()
			self.model = self.model.half()

	def inpaint(self, npframes, masks, ratio=1.0, dilate_radius=4, raft_iter=20, subvideo_length=80, neighbor_length=10, ref_stride=10):
		"""
		Perform Inpainting for video subsets
		
		Output:
		inpainted_frames: numpy array, T, H, W, 3
		"""
		
		frames = []
		for i in range(len(npframes)):
			frames.append(Image.fromarray(npframes[i].astype('uint8'), mode="RGB"))
		del npframes

		size = frames[0].size
		# The ouput size should be divided by 2 so that it can encoded by libx264
		size = (int(ratio*size[0])//2*2, int(ratio*size[1])//2*2)

		# set propainter size limit to 720 to reduce memory usage
		if max(size[0], size[1]) > 720:
			scale = 720.0 / max(size[0], size[1])
			# The ouput size should be divided by 2 so that it can encoded by libx264
			size = (int(scale*size[0])//2*2, int(scale*size[1])//2*2)

		frames_len = len(frames)
		frames, size, out_size = resize_frames(frames, size)
		flow_masks, masks_dilated = read_mask_demo(masks, frames_len, size, dilate_radius, dilate_radius)
		w, h = size

		frames_inp = [np.array(f).astype(np.uint8) for f in frames]
		frames = to_tensors()(frames).unsqueeze(0) * 2 - 1    
		flow_masks = to_tensors()(flow_masks).unsqueeze(0)
		masks_dilated = to_tensors()(masks_dilated).unsqueeze(0)
		frames, flow_masks, masks_dilated = frames.to(self.device), flow_masks.to(self.device), masks_dilated.to(self.device)
		
		##############################################
		# ProPainter inference
		##############################################
		video_length = frames.size(1)
		with torch.no_grad():
			# ---- compute flow ----
			if frames.size(-1) <= 640: 
				short_clip_len = 12
			elif frames.size(-1) <= 720: 
				short_clip_len = 8
			elif frames.size(-1) <= 1280:
				short_clip_len = 4
			else:
				short_clip_len = 2
			
			# use fp32 for RAFT
			if frames.size(1) > short_clip_len:
				gt_flows_f_list, gt_flows_b_list = [], []
				for f in range(0, video_length, short_clip_len):
					end_f = min(video_length, f + short_clip_len)
					if f == 0:
						flows_f, flows_b = self.fix_raft(frames[:,f:end_f], iters=raft_iter)
					else:
						flows_f, flows_b = self.fix_raft(frames[:,f-1:end_f], iters=raft_iter)
					
					gt_flows_f_list.append(flows_f)
					gt_flows_b_list.append(flows_b)
					torch.cuda.empty_cache()
					
				gt_flows_f = torch.cat(gt_flows_f_list, dim=1)
				gt_flows_b = torch.cat(gt_flows_b_list, dim=1)
				gt_flows_bi = (gt_flows_f, gt_flows_b)
			else:
				gt_flows_bi = self.fix_raft(frames, iters=raft_iter)
				torch.cuda.empty_cache()

			if self.use_half:
				frames, flow_masks, masks_dilated = frames.half(), flow_masks.half(), masks_dilated.half()
				gt_flows_bi = (gt_flows_bi[0].half(), gt_flows_bi[1].half())

			# ---- complete flow ----
			flow_length = gt_flows_bi[0].size(1)
			if flow_length > subvideo_length:
				pred_flows_f, pred_flows_b = [], []
				pad_len = 5
				for f in range(0, flow_length, subvideo_length):
					s_f = max(0, f - pad_len)
					e_f = min(flow_length, f + subvideo_length + pad_len)
					pad_len_s = max(0, f) - s_f
					pad_len_e = e_f - min(flow_length, f + subvideo_length)
					pred_flows_bi_sub, _ = self.fix_flow_complete.forward_bidirect_flow(
						(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]), 
						flow_masks[:, s_f:e_f+1])
					pred_flows_bi_sub = self.fix_flow_complete.combine_flow(
						(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]), 
						pred_flows_bi_sub, 
						flow_masks[:, s_f:e_f+1])

					pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e])
					pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e])
					torch.cuda.empty_cache()
					
				pred_flows_f = torch.cat(pred_flows_f, dim=1)
				pred_flows_b = torch.cat(pred_flows_b, dim=1)
				pred_flows_bi = (pred_flows_f, pred_flows_b)
			else:
				pred_flows_bi, _ = self.fix_flow_complete.forward_bidirect_flow(gt_flows_bi, flow_masks)
				pred_flows_bi = self.fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, flow_masks)
				torch.cuda.empty_cache()
				
			# ---- image propagation ----
			masked_frames = frames * (1 - masks_dilated)
			subvideo_length_img_prop = min(100, subvideo_length) # ensure a minimum of 100 frames for image propagation
			if video_length > subvideo_length_img_prop:
				updated_frames, updated_masks = [], []
				pad_len = 10
				for f in range(0, video_length, subvideo_length_img_prop):
					s_f = max(0, f - pad_len)
					e_f = min(video_length, f + subvideo_length_img_prop + pad_len)
					pad_len_s = max(0, f) - s_f
					pad_len_e = e_f - min(video_length, f + subvideo_length_img_prop)

					b, t, _, _, _ = masks_dilated[:, s_f:e_f].size()
					pred_flows_bi_sub = (pred_flows_bi[0][:, s_f:e_f-1], pred_flows_bi[1][:, s_f:e_f-1])
					prop_imgs_sub, updated_local_masks_sub = self.model.img_propagation(masked_frames[:, s_f:e_f], 
																		pred_flows_bi_sub, 
																		masks_dilated[:, s_f:e_f], 
																		'nearest')
					updated_frames_sub = frames[:, s_f:e_f] * (1 - masks_dilated[:, s_f:e_f]) + \
										prop_imgs_sub.view(b, t, 3, h, w) * masks_dilated[:, s_f:e_f]
					updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w)
					
					updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e])
					updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e])
					torch.cuda.empty_cache()
					
				updated_frames = torch.cat(updated_frames, dim=1)
				updated_masks = torch.cat(updated_masks, dim=1)
			else:
				b, t, _, _, _ = masks_dilated.size()
				prop_imgs, updated_local_masks = self.model.img_propagation(masked_frames, pred_flows_bi, masks_dilated, 'nearest')
				updated_frames = frames * (1 - masks_dilated) + prop_imgs.view(b, t, 3, h, w) * masks_dilated
				updated_masks = updated_local_masks.view(b, t, 1, h, w)
				torch.cuda.empty_cache()
	
		ori_frames = frames_inp
		comp_frames = [None] * video_length

		neighbor_stride = neighbor_length // 2
		if video_length > subvideo_length:
			ref_num = subvideo_length // ref_stride
		else:
			ref_num = -1
		
		# ---- feature propagation + transformer ----
		for f in tqdm(range(0, video_length, neighbor_stride)):
			neighbor_ids = [
				i for i in range(max(0, f - neighbor_stride),
									min(video_length, f + neighbor_stride + 1))
			]
			ref_ids = get_ref_index(f, neighbor_ids, video_length, ref_stride, ref_num)
			selected_imgs = updated_frames[:, neighbor_ids + ref_ids, :, :, :]
			selected_masks = masks_dilated[:, neighbor_ids + ref_ids, :, :, :]
			selected_update_masks = updated_masks[:, neighbor_ids + ref_ids, :, :, :]
			selected_pred_flows_bi = (pred_flows_bi[0][:, neighbor_ids[:-1], :, :, :], pred_flows_bi[1][:, neighbor_ids[:-1], :, :, :])
			
			with torch.no_grad():
				# 1.0 indicates mask
				l_t = len(neighbor_ids)
				
				# pred_img = selected_imgs # results of image propagation
				pred_img = self.model(selected_imgs, selected_pred_flows_bi, selected_masks, selected_update_masks, l_t)
				
				pred_img = pred_img.view(-1, 3, h, w)

				pred_img = (pred_img + 1) / 2
				pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy() * 255
				binary_masks = masks_dilated[0, neighbor_ids, :, :, :].cpu().permute(
					0, 2, 3, 1).numpy().astype(np.uint8)
				for i in range(len(neighbor_ids)):
					idx = neighbor_ids[i]
					img = np.array(pred_img[i]).astype(np.uint8) * binary_masks[i] \
						+ ori_frames[idx] * (1 - binary_masks[i])
					if comp_frames[idx] is None:
						comp_frames[idx] = img
					else: 
						comp_frames[idx] = comp_frames[idx].astype(np.float32) * 0.5 + img.astype(np.float32) * 0.5
						
					comp_frames[idx] = comp_frames[idx].astype(np.uint8)
			
			torch.cuda.empty_cache()

		# need to return numpy array, T, H, W, 3
		comp_frames = [cv2.resize(f, out_size) for f in comp_frames]

		return comp_frames