File size: 33,774 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296e4e0
 
 
6668a85
296e4e0
d304d53
296e4e0
 
d304d53
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6668a85
c1637a6
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1637a6
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd00c65
320e465
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
import sys
sys.path.append("../../")

import os
import json
import time
import psutil
import argparse

import cv2
import torch
import torchvision
import numpy as np
import gradio as gr

from tools.painter import mask_painter
from track_anything import TrackingAnything

from model.misc import get_device
from utils.download_util import load_file_from_url, download_url_to_file

# make sample videos into mp4 as git does not allow mp4 without lfs
sample_videos_path = os.path.join('/home/user/app/web-demos/hugging_face/', "test_sample/")
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/14334509/281805130-e57c7016-5a6d-4d3b-9df9-b4ea6372cc87.mp4", os.path.join(sample_videos_path, "test-sample0.mp4"))
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/14334509/281828039-5def0fc9-3a22-45b7-838d-6bf78b6772c3.mp4", os.path.join(sample_videos_path, "test-sample1.mp4"))
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/76810782/281807801-69b9f70c-1e56-428d-9b1b-4870c5e533a7.mp4", os.path.join(sample_videos_path, "test-sample2.mp4"))
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/76810782/281808625-ad98f03f-99c7-4008-acf1-3d7beb48f13b.mp4", os.path.join(sample_videos_path, "test-sample3.mp4"))
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/14334509/281828066-ee09ae82-916f-4a2e-a6c7-6fc50645fd20.mp4", os.path.join(sample_videos_path, "test-sample4.mp4"))


def parse_augment():
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default=None)
    parser.add_argument('--sam_model_type', type=str, default="vit_h")
    parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications")  
    parser.add_argument('--mask_save', default=False)
    args = parser.parse_args()
    
    if not args.device:
        args.device = str(get_device())

    return args 

# convert points input to prompt state
def get_prompt(click_state, click_input):
    inputs = json.loads(click_input)
    points = click_state[0]
    labels = click_state[1]
    for input in inputs:
        points.append(input[:2])
        labels.append(input[2])
    click_state[0] = points
    click_state[1] = labels
    prompt = {
        "prompt_type":["click"],
        "input_point":click_state[0],
        "input_label":click_state[1],
        "multimask_output":"True",
    }
    return prompt

# extract frames from upload video
def get_frames_from_video(video_input, video_state):
    """
    Args:
        video_path:str
        timestamp:float64
    Return 
        [[0:nearest_frame], [nearest_frame:], nearest_frame]
    """
    video_path = video_input
    frames = []
    user_name = time.time()
    operation_log = [("",""),("Video uploaded! Try to click the image shown in step2 to add masks.","Normal")]
    try:
        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        while cap.isOpened():
            ret, frame = cap.read()
            if ret == True:
                current_memory_usage = psutil.virtual_memory().percent
                frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
                # if current_memory_usage > 90:
                #     operation_log = [("Memory usage is too high (>90%). Stop the video extraction. Please reduce the video resolution or frame rate.", "Error")]
                #     print("Memory usage is too high (>90%). Please reduce the video resolution or frame rate.")
                #     break
            else:
                break
    except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
        print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
    image_size = (frames[0].shape[0],frames[0].shape[1]) 
    # initialize video_state
    video_state = {
        "user_name": user_name,
        "video_name": os.path.split(video_path)[-1],
        "origin_images": frames,
        "painted_images": frames.copy(),
        "masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
        "logits": [None]*len(frames),
        "select_frame_number": 0,
        "fps": fps
        }
    video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), len(frames), image_size)
    model.samcontroler.sam_controler.reset_image() 
    model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
    return video_state, video_info, video_state["origin_images"][0], gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=True, maximum=len(frames), value=len(frames)), \
                        gr.update(visible=True), gr.update(visible=True), \
                        gr.update(visible=True), gr.update(visible=True),\
                        gr.update(visible=True), gr.update(visible=True), \
                        gr.update(visible=True), gr.update(visible=True), \
                        gr.update(visible=True), gr.update(visible=True), \
                        gr.update(visible=True), gr.update(visible=True, choices=[], value=[]), \
                        gr.update(visible=True, value=operation_log), gr.update(visible=True, value=operation_log)

# get the select frame from gradio slider
def select_template(image_selection_slider, video_state, interactive_state, mask_dropdown):

    # images = video_state[1]
    image_selection_slider -= 1
    video_state["select_frame_number"] = image_selection_slider

    # once select a new template frame, set the image in sam

    model.samcontroler.sam_controler.reset_image()
    model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])

    operation_log = [("",""), ("Select tracking start frame {}. Try to click the image to add masks for tracking.".format(image_selection_slider),"Normal")]

    return video_state["painted_images"][image_selection_slider], video_state, interactive_state, operation_log, operation_log

# set the tracking end frame
def get_end_number(track_pause_number_slider, video_state, interactive_state):
    interactive_state["track_end_number"] = track_pause_number_slider
    operation_log = [("",""),("Select tracking finish frame {}.Try to click the image to add masks for tracking.".format(track_pause_number_slider),"Normal")]

    return video_state["painted_images"][track_pause_number_slider],interactive_state, operation_log, operation_log

# use sam to get the mask
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData):
    """
    Args:
        template_frame: PIL.Image
        point_prompt: flag for positive or negative button click
        click_state: [[points], [labels]]
    """
    if point_prompt == "Positive":
        coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
        interactive_state["positive_click_times"] += 1
    else:
        coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
        interactive_state["negative_click_times"] += 1
    
    # prompt for sam model
    model.samcontroler.sam_controler.reset_image()
    model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]])
    prompt = get_prompt(click_state=click_state, click_input=coordinate)

    mask, logit, painted_image = model.first_frame_click( 
                                                      image=video_state["origin_images"][video_state["select_frame_number"]], 
                                                      points=np.array(prompt["input_point"]),
                                                      labels=np.array(prompt["input_label"]),
                                                      multimask=prompt["multimask_output"],
                                                      )
    video_state["masks"][video_state["select_frame_number"]] = mask
    video_state["logits"][video_state["select_frame_number"]] = logit
    video_state["painted_images"][video_state["select_frame_number"]] = painted_image

    operation_log = [("",""), ("You can try to add positive or negative points by clicking, click Clear clicks button to refresh the image, click Add mask button when you are satisfied with the segment, or click Remove mask button to remove all added masks.","Normal")]
    return painted_image, video_state, interactive_state, operation_log, operation_log

def add_multi_mask(video_state, interactive_state, mask_dropdown):
    try:
        mask = video_state["masks"][video_state["select_frame_number"]]
        interactive_state["multi_mask"]["masks"].append(mask)
        interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
        mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
        select_frame, _, _ = show_mask(video_state, interactive_state, mask_dropdown)
        operation_log = [("",""),("Added a mask, use the mask select for target tracking or inpainting.","Normal")]
    except:
        operation_log = [("Please click the image in step2 to generate masks.", "Error"), ("","")]
    return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]], operation_log, operation_log

def clear_click(video_state, click_state):
    click_state = [[],[]]
    template_frame = video_state["origin_images"][video_state["select_frame_number"]]
    operation_log = [("",""), ("Cleared points history and refresh the image.","Normal")]
    return template_frame, click_state, operation_log, operation_log

def remove_multi_mask(interactive_state, mask_dropdown):
    interactive_state["multi_mask"]["mask_names"]= []
    interactive_state["multi_mask"]["masks"] = []

    operation_log = [("",""), ("Remove all masks. Try to add new masks","Normal")]
    return interactive_state, gr.update(choices=[],value=[]), operation_log, operation_log

def show_mask(video_state, interactive_state, mask_dropdown):
    mask_dropdown.sort()
    select_frame = video_state["origin_images"][video_state["select_frame_number"]]
    for i in range(len(mask_dropdown)):
        mask_number = int(mask_dropdown[i].split("_")[1]) - 1
        mask = interactive_state["multi_mask"]["masks"][mask_number]
        select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
    
    operation_log = [("",""), ("Added masks {}. If you want to do the inpainting with current masks, please go to step3, and click the Tracking button first and then Inpainting button.".format(mask_dropdown),"Normal")]
    return select_frame, operation_log, operation_log

# tracking vos
def vos_tracking_video(video_state, interactive_state, mask_dropdown):
    operation_log = [("",""), ("Tracking finished! Try to click the Inpainting button to get the inpainting result.","Normal")]
    model.cutie.clear_memory()
    if interactive_state["track_end_number"]:
        following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
    else:
        following_frames = video_state["origin_images"][video_state["select_frame_number"]:]

    if interactive_state["multi_mask"]["masks"]:
        if len(mask_dropdown) == 0:
            mask_dropdown = ["mask_001"]
        mask_dropdown.sort()
        template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
        for i in range(1,len(mask_dropdown)):
            mask_number = int(mask_dropdown[i].split("_")[1]) - 1 
            template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
        video_state["masks"][video_state["select_frame_number"]]= template_mask
    else:      
        template_mask = video_state["masks"][video_state["select_frame_number"]]
    fps = video_state["fps"]

    # operation error
    if len(np.unique(template_mask))==1:
        template_mask[0][0]=1
        operation_log = [("Please add at least one mask to track by clicking the image in step2.","Error"), ("","")]
        # return video_output, video_state, interactive_state, operation_error
    masks, logits, painted_images = model.generator(images=following_frames, template_mask=template_mask)
    # clear GPU memory
    model.cutie.clear_memory()

    if interactive_state["track_end_number"]: 
        video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks
        video_state["logits"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = logits
        video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images
    else:
        video_state["masks"][video_state["select_frame_number"]:] = masks
        video_state["logits"][video_state["select_frame_number"]:] = logits
        video_state["painted_images"][video_state["select_frame_number"]:] = painted_images

    video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/track/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
    interactive_state["inference_times"] += 1
    
    print("For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(interactive_state["inference_times"], 
                                                                                                                                           interactive_state["positive_click_times"]+interactive_state["negative_click_times"],
                                                                                                                                           interactive_state["positive_click_times"],
                                                                                                                                        interactive_state["negative_click_times"]))

    #### shanggao code for mask save
    if interactive_state["mask_save"]:
        if not os.path.exists('./result/mask/{}'.format(video_state["video_name"].split('.')[0])):
            os.makedirs('./result/mask/{}'.format(video_state["video_name"].split('.')[0]))
        i = 0
        print("save mask")
        for mask in video_state["masks"]:
            np.save(os.path.join('./result/mask/{}'.format(video_state["video_name"].split('.')[0]), '{:05d}.npy'.format(i)), mask)
            i+=1
        # save_mask(video_state["masks"], video_state["video_name"])
    #### shanggao code for mask save
    return video_output, video_state, interactive_state, operation_log, operation_log

# inpaint 
def inpaint_video(video_state, resize_ratio_number, dilate_radius_number, raft_iter_number, subvideo_length_number, neighbor_length_number, ref_stride_number, mask_dropdown):
    operation_log = [("",""), ("Inpainting finished!","Normal")]

    frames = np.asarray(video_state["origin_images"])
    fps = video_state["fps"]
    inpaint_masks = np.asarray(video_state["masks"])
    if len(mask_dropdown) == 0:
        mask_dropdown = ["mask_001"]
    mask_dropdown.sort()
    # convert mask_dropdown to mask numbers
    inpaint_mask_numbers = [int(mask_dropdown[i].split("_")[1]) for i in range(len(mask_dropdown))]
    # interate through all masks and remove the masks that are not in mask_dropdown
    unique_masks = np.unique(inpaint_masks)
    num_masks = len(unique_masks) - 1
    for i in range(1, num_masks + 1):
        if i in inpaint_mask_numbers:
            continue
        inpaint_masks[inpaint_masks==i] = 0
    
    # inpaint for videos
    inpainted_frames = model.baseinpainter.inpaint(frames, 
                                                   inpaint_masks, 
                                                   ratio=resize_ratio_number, 
                                                   dilate_radius=dilate_radius_number,
                                                   raft_iter=raft_iter_number,
                                                   subvideo_length=subvideo_length_number, 
                                                   neighbor_length=neighbor_length_number, 
                                                   ref_stride=ref_stride_number)   # numpy array, T, H, W, 3

    video_output = generate_video_from_frames(inpainted_frames, output_path="./result/inpaint/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video

    return video_output, operation_log, operation_log

# generate video after vos inference
def generate_video_from_frames(frames, output_path, fps=30):
    """
    Generates a video from a list of frames.
    
    Args:
        frames (list of numpy arrays): The frames to include in the video.
        output_path (str): The path to save the generated video.
        fps (int, optional): The frame rate of the output video. Defaults to 30.
    """
    frames = torch.from_numpy(np.asarray(frames))
    if not os.path.exists(os.path.dirname(output_path)):
        os.makedirs(os.path.dirname(output_path))
    torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
    return output_path

def restart():
    operation_log = [("",""), ("Try to upload your video and click the Get video info button to get started!", "Normal")]
    return {
            "user_name": "",
            "video_name": "",
            "origin_images": None,
            "painted_images": None,
            "masks": None,
            "inpaint_masks": None,
            "logits": None,
            "select_frame_number": 0,
            "fps": 30
        }, {
            "inference_times": 0,
            "negative_click_times" : 0,
            "positive_click_times": 0,
            "mask_save": args.mask_save,
            "multi_mask": {
                "mask_names": [],
                "masks": []
            },
            "track_end_number": None,
        }, [[],[]], None, None, None, \
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), "", \
        gr.update(visible=True, value=operation_log), gr.update(visible=False, value=operation_log)


# args, defined in track_anything.py
args = parse_augment()
pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/'
sam_checkpoint_url_dict = {
    'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
    'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
    'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
}
checkpoint_fodler = os.path.join('..', '..', 'weights')

sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_fodler)
cutie_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'cutie-base-mega.pth'), checkpoint_fodler)
propainter_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'ProPainter.pth'), checkpoint_fodler)
raft_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'raft-things.pth'), checkpoint_fodler)
flow_completion_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'), checkpoint_fodler)

# initialize sam, cutie, propainter models
model = TrackingAnything(sam_checkpoint, cutie_checkpoint, propainter_checkpoint, raft_checkpoint, flow_completion_checkpoint, args)


title = r"""<h1 align="center">ProPainter: Improving Propagation and Transformer for Video Inpainting</h1>"""

description = r"""
<center><img src='https://github.com/sczhou/ProPainter/raw/main/assets/propainter_logo1_glow.png' alt='Propainter logo' style="width:180px; margin-bottom:20px"></center>
<b>Official Gradio demo</b> for <a href='https://github.com/sczhou/ProPainter' target='_blank'><b>Improving Propagation and Transformer for Video Inpainting (ICCV 2023)</b></a>.<br>
πŸ”₯ Propainter is a robust inpainting algorithm.<br>
πŸ€— Try to drop your video, add the masks and get the the inpainting results!<br>
"""
article = r"""
If ProPainter is helpful, please help to ⭐ the <a href='https://github.com/sczhou/ProPainter' target='_blank'>Github Repo</a>. Thanks! 
[![GitHub Stars](https://img.shields.io/github/stars/sczhou/ProPainter?style=social)](https://github.com/sczhou/ProPainter)

---

πŸ“ **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{zhou2023propainter,
   title={{ProPainter}: Improving Propagation and Transformer for Video Inpainting},
   author={Zhou, Shangchen and Li, Chongyi and Chan, Kelvin C.K and Loy, Chen Change},
   booktitle={Proceedings of IEEE International Conference on Computer Vision (ICCV)},
   year={2023}
}
```

πŸ“‹ **License**
<br>
This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>. 
Redistribution and use for non-commercial purposes should follow this license.

πŸ“§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>shangchenzhou@gmail.com</b>.
<div>
    πŸ€— Find Me:
    <a href="https://twitter.com/ShangchenZhou"><img style="margin-top:0.5em; margin-bottom:0.5em" src="https://img.shields.io/twitter/follow/ShangchenZhou?label=%40ShangchenZhou&style=social" alt="Twitter Follow"></a> 
    <a href="https://github.com/sczhou"><img style="margin-top:0.5em; margin-bottom:2em" src="https://img.shields.io/github/followers/sczhou?style=social" alt="Github Follow"></a>
</div>

"""
css = """
.gradio-container {width: 85% !important}
.gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important;}
span.svelte-s1r2yt {font-size: 17px !important; font-weight: bold !important; color: #d30f2f !important;}
button {border-radius: 8px !important;}
.add_button {background-color: #4CAF50 !important;}
.remove_button {background-color: #f44336 !important;}
.mask_button_group {gap: 10px !important;}
.video {height: 300px !important;}
.image {height: 300px !important;}
.video .wrap.svelte-lcpz3o {display: flex !important; align-items: center !important; justify-content: center !important;}
.video .wrap.svelte-lcpz3o > :first-child {height: 100% !important;}
.margin_center {width: 50% !important; margin: auto !important;}
.jc_center {justify-content: center !important;}
"""

with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as iface:
    click_state = gr.State([[],[]])

    interactive_state = gr.State({
        "inference_times": 0,
        "negative_click_times" : 0,
        "positive_click_times": 0,
        "mask_save": args.mask_save,
        "multi_mask": {
            "mask_names": [],
            "masks": []
        },
        "track_end_number": None,
        }
    )

    video_state = gr.State(
        {
        "user_name": "",
        "video_name": "",
        "origin_images": None,
        "painted_images": None,
        "masks": None,
        "inpaint_masks": None,
        "logits": None,
        "select_frame_number": 0,
        "fps": 30
        }
    )

    gr.Markdown(title)
    gr.Markdown(description)

    with gr.Group(elem_classes="gr-monochrome-group"):
        with gr.Row():
            with gr.Accordion('ProPainter Parameters (click to expand)', open=False):
                with gr.Row():
                    resize_ratio_number = gr.Slider(label='Resize ratio',
                                            minimum=0.01,
                                            maximum=1.0,
                                            step=0.01,
                                            value=1.0)
                    raft_iter_number = gr.Slider(label='Iterations for RAFT inference.',
                                            minimum=5,
                                            maximum=20,
                                            step=1,
                                            value=20,)
                with gr.Row():
                    dilate_radius_number = gr.Slider(label='Mask dilation for video and flow masking.',
                                            minimum=0,
                                            maximum=10,
                                            step=1,
                                            value=8,)

                    subvideo_length_number = gr.Slider(label='Length of sub-video for long video inference.',
                                            minimum=40,
                                            maximum=200,
                                            step=1,
                                            value=80,)
                with gr.Row():
                    neighbor_length_number = gr.Slider(label='Length of local neighboring frames.',
                                            minimum=5,
                                            maximum=20,
                                            step=1,
                                            value=10,)
                    
                    ref_stride_number = gr.Slider(label='Stride of global reference frames.',
                                            minimum=5,
                                            maximum=20,
                                            step=1,
                                            value=10,)
  
    with gr.Column():
        # input video
        gr.Markdown("## Step1: Upload video")
        with gr.Row(equal_height=True):
            with gr.Column(scale=2):      
                video_input = gr.Video(elem_classes="video")
                extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary") 
            with gr.Column(scale=2):
                run_status = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get svideo info button to get started!", "Normal")])
                video_info = gr.Textbox(label="Video Info")
                
        
        # add masks
        step2_title = gr.Markdown("---\n## Step2: Add masks", visible=False)
        with gr.Row(equal_height=True):
            with gr.Column(scale=2):
                template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
                image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track start frame", visible=False)
                track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False)
            with gr.Column(scale=2, elem_classes="jc_center"):
                run_status2 = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get svideo info button to get started!", "Normal")], visible=False)
                with gr.Row():
                    with gr.Column(scale=2, elem_classes="mask_button_group"):
                        clear_button_click = gr.Button(value="Clear clicks", interactive=True, visible=False)
                        remove_mask_button = gr.Button(value="Remove mask", interactive=True, visible=False, elem_classes="remove_button")
                        Add_mask_button = gr.Button(value="Add mask", interactive=True, visible=False, elem_classes="add_button")
                    point_prompt = gr.Radio(
                        choices=["Positive", "Negative"],
                        value="Positive",
                        label="Point prompt",
                        interactive=True,
                        visible=False,
                        min_width=100,
                        scale=1)
                mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask selection", info=".", visible=False)
            
        # output video
        step3_title = gr.Markdown("---\n## Step3: Track masks and get the inpainting result", visible=False)
        with gr.Row(equal_height=True):
            with gr.Column(scale=2):
                tracking_video_output = gr.Video(visible=False, elem_classes="video")
                tracking_video_predict_button = gr.Button(value="1. Tracking", visible=False, elem_classes="margin_center")
            with gr.Column(scale=2):
                inpaiting_video_output = gr.Video(visible=False, elem_classes="video")
                inpaint_video_predict_button = gr.Button(value="2. Inpainting", visible=False, elem_classes="margin_center")

    # first step: get the video information 
    extract_frames_button.click(
        fn=get_frames_from_video,
        inputs=[
            video_input, video_state
        ],
        outputs=[video_state, video_info, template_frame,
                 image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, Add_mask_button, template_frame,
                 tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button, inpaint_video_predict_button, step2_title, step3_title,mask_dropdown, run_status, run_status2]
    )   

    # second step: select images from slider
    image_selection_slider.release(fn=select_template, 
                                   inputs=[image_selection_slider, video_state, interactive_state], 
                                   outputs=[template_frame, video_state, interactive_state, run_status, run_status2], api_name="select_image")
    track_pause_number_slider.release(fn=get_end_number, 
                                   inputs=[track_pause_number_slider, video_state, interactive_state], 
                                   outputs=[template_frame, interactive_state, run_status, run_status2], api_name="end_image")
    
    # click select image to get mask using sam
    template_frame.select(
        fn=sam_refine,
        inputs=[video_state, point_prompt, click_state, interactive_state],
        outputs=[template_frame, video_state, interactive_state, run_status, run_status2]
    )

    # add different mask
    Add_mask_button.click(
        fn=add_multi_mask,
        inputs=[video_state, interactive_state, mask_dropdown],
        outputs=[interactive_state, mask_dropdown, template_frame, click_state, run_status, run_status2]
    )

    remove_mask_button.click(
        fn=remove_multi_mask,
        inputs=[interactive_state, mask_dropdown],
        outputs=[interactive_state, mask_dropdown, run_status, run_status2]
    )

    # tracking video from select image and mask
    tracking_video_predict_button.click(
        fn=vos_tracking_video,
        inputs=[video_state, interactive_state, mask_dropdown],
        outputs=[tracking_video_output, video_state, interactive_state, run_status, run_status2]
    )

    # inpaint video from select image and mask
    inpaint_video_predict_button.click(
        fn=inpaint_video,
        inputs=[video_state, resize_ratio_number, dilate_radius_number, raft_iter_number, subvideo_length_number, neighbor_length_number, ref_stride_number, mask_dropdown],
        outputs=[inpaiting_video_output, run_status, run_status2]
    )

    # click to get mask
    mask_dropdown.change(
        fn=show_mask,
        inputs=[video_state, interactive_state, mask_dropdown],
        outputs=[template_frame, run_status, run_status2]
    )
    
    # clear input
    video_input.change(
        fn=restart,
        inputs=[],
        outputs=[ 
            video_state,
            interactive_state,
            click_state,
            tracking_video_output, inpaiting_video_output,
            template_frame,
            tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, 
            Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2
        ],
        queue=False,
        show_progress=False)
    
    video_input.clear(
        fn=restart,
        inputs=[],
        outputs=[ 
            video_state,
            interactive_state,
            click_state,
            tracking_video_output, inpaiting_video_output,
            template_frame,
            tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, 
            Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2
        ],
        queue=False,
        show_progress=False)
    
    # points clear
    clear_button_click.click(
        fn = clear_click,
        inputs = [video_state, click_state,],
        outputs = [template_frame,click_state, run_status, run_status2],
    )

    # set example
    gr.Markdown("## Examples")
    gr.Examples(
        examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0.mp4", "test-sample1.mp4", "test-sample2.mp4", "test-sample3.mp4", "test-sample4.mp4"]],
        inputs=[video_input],
    )
    gr.Markdown(article)

iface.queue(concurrency_count=1)
iface.launch(debug=True)