File size: 9,397 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch
import torch.nn as nn
import torch.nn.functional as F

from .kernels import get_spatial_gradient_kernel2d, get_spatial_gradient_kernel3d, normalize_kernel2d


def spatial_gradient(input: torch.Tensor, mode: str = 'sobel', order: int = 1, normalized: bool = True) -> torch.Tensor:
    r"""Compute the first order image derivative in both x and y using a Sobel operator.

    .. image:: _static/img/spatial_gradient.png

    Args:
        input: input image tensor with shape :math:`(B, C, H, W)`.
        mode: derivatives modality, can be: `sobel` or `diff`.
        order: the order of the derivatives.
        normalized: whether the output is normalized.

    Return:
        the derivatives of the input feature map. with shape :math:`(B, C, 2, H, W)`.

    .. note::
       See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/
       filtering_edges.html>`__.

    Examples:
        >>> input = torch.rand(1, 3, 4, 4)
        >>> output = spatial_gradient(input)  # 1x3x2x4x4
        >>> output.shape
        torch.Size([1, 3, 2, 4, 4])
    """
    if not isinstance(input, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(input)}")

    if not len(input.shape) == 4:
        raise ValueError(f"Invalid input shape, we expect BxCxHxW. Got: {input.shape}")
    # allocate kernel
    kernel: torch.Tensor = get_spatial_gradient_kernel2d(mode, order)
    if normalized:
        kernel = normalize_kernel2d(kernel)

    # prepare kernel
    b, c, h, w = input.shape
    tmp_kernel: torch.Tensor = kernel.to(input).detach()
    tmp_kernel = tmp_kernel.unsqueeze(1).unsqueeze(1)

    # convolve input tensor with sobel kernel
    kernel_flip: torch.Tensor = tmp_kernel.flip(-3)

    # Pad with "replicate for spatial dims, but with zeros for channel
    spatial_pad = [kernel.size(1) // 2, kernel.size(1) // 2, kernel.size(2) // 2, kernel.size(2) // 2]
    out_channels: int = 3 if order == 2 else 2
    padded_inp: torch.Tensor = F.pad(input.reshape(b * c, 1, h, w), spatial_pad, 'replicate')[:, :, None]

    return F.conv3d(padded_inp, kernel_flip, padding=0).view(b, c, out_channels, h, w)


def spatial_gradient3d(input: torch.Tensor, mode: str = 'diff', order: int = 1) -> torch.Tensor:
    r"""Compute the first and second order volume derivative in x, y and d using a diff operator.

    Args:
        input: input features tensor with shape :math:`(B, C, D, H, W)`.
        mode: derivatives modality, can be: `sobel` or `diff`.
        order: the order of the derivatives.

    Return:
        the spatial gradients of the input feature map with shape math:`(B, C, 3, D, H, W)`
        or :math:`(B, C, 6, D, H, W)`.

    Examples:
        >>> input = torch.rand(1, 4, 2, 4, 4)
        >>> output = spatial_gradient3d(input)
        >>> output.shape
        torch.Size([1, 4, 3, 2, 4, 4])
    """
    if not isinstance(input, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(input)}")

    if not len(input.shape) == 5:
        raise ValueError(f"Invalid input shape, we expect BxCxDxHxW. Got: {input.shape}")
    b, c, d, h, w = input.shape
    dev = input.device
    dtype = input.dtype
    if (mode == 'diff') and (order == 1):
        # we go for the special case implementation due to conv3d bad speed
        x: torch.Tensor = F.pad(input, 6 * [1], 'replicate')
        center = slice(1, -1)
        left = slice(0, -2)
        right = slice(2, None)
        out = torch.empty(b, c, 3, d, h, w, device=dev, dtype=dtype)
        out[..., 0, :, :, :] = x[..., center, center, right] - x[..., center, center, left]
        out[..., 1, :, :, :] = x[..., center, right, center] - x[..., center, left, center]
        out[..., 2, :, :, :] = x[..., right, center, center] - x[..., left, center, center]
        out = 0.5 * out
    else:
        # prepare kernel
        # allocate kernel
        kernel: torch.Tensor = get_spatial_gradient_kernel3d(mode, order)

        tmp_kernel: torch.Tensor = kernel.to(input).detach()
        tmp_kernel = tmp_kernel.repeat(c, 1, 1, 1, 1)

        # convolve input tensor with grad kernel
        kernel_flip: torch.Tensor = tmp_kernel.flip(-3)

        # Pad with "replicate for spatial dims, but with zeros for channel
        spatial_pad = [
            kernel.size(2) // 2,
            kernel.size(2) // 2,
            kernel.size(3) // 2,
            kernel.size(3) // 2,
            kernel.size(4) // 2,
            kernel.size(4) // 2,
        ]
        out_ch: int = 6 if order == 2 else 3
        out = F.conv3d(F.pad(input, spatial_pad, 'replicate'), kernel_flip, padding=0, groups=c).view(
            b, c, out_ch, d, h, w
        )
    return out


def sobel(input: torch.Tensor, normalized: bool = True, eps: float = 1e-6) -> torch.Tensor:
    r"""Compute the Sobel operator and returns the magnitude per channel.

    .. image:: _static/img/sobel.png

    Args:
        input: the input image with shape :math:`(B,C,H,W)`.
        normalized: if True, L1 norm of the kernel is set to 1.
        eps: regularization number to avoid NaN during backprop.

    Return:
        the sobel edge gradient magnitudes map with shape :math:`(B,C,H,W)`.

    .. note::
       See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/
       filtering_edges.html>`__.

    Example:
        >>> input = torch.rand(1, 3, 4, 4)
        >>> output = sobel(input)  # 1x3x4x4
        >>> output.shape
        torch.Size([1, 3, 4, 4])
    """
    if not isinstance(input, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(input)}")

    if not len(input.shape) == 4:
        raise ValueError(f"Invalid input shape, we expect BxCxHxW. Got: {input.shape}")

    # comput the x/y gradients
    edges: torch.Tensor = spatial_gradient(input, normalized=normalized)

    # unpack the edges
    gx: torch.Tensor = edges[:, :, 0]
    gy: torch.Tensor = edges[:, :, 1]

    # compute gradient maginitude
    magnitude: torch.Tensor = torch.sqrt(gx * gx + gy * gy + eps)

    return magnitude


class SpatialGradient(nn.Module):
    r"""Compute the first order image derivative in both x and y using a Sobel operator.

    Args:
        mode: derivatives modality, can be: `sobel` or `diff`.
        order: the order of the derivatives.
        normalized: whether the output is normalized.

    Return:
        the sobel edges of the input feature map.

    Shape:
        - Input: :math:`(B, C, H, W)`
        - Output: :math:`(B, C, 2, H, W)`

    Examples:
        >>> input = torch.rand(1, 3, 4, 4)
        >>> output = SpatialGradient()(input)  # 1x3x2x4x4
    """

    def __init__(self, mode: str = 'sobel', order: int = 1, normalized: bool = True) -> None:
        super().__init__()
        self.normalized: bool = normalized
        self.order: int = order
        self.mode: str = mode

    def __repr__(self) -> str:
        return (
            self.__class__.__name__ + '('
            'order=' + str(self.order) + ', ' + 'normalized=' + str(self.normalized) + ', ' + 'mode=' + self.mode + ')'
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return spatial_gradient(input, self.mode, self.order, self.normalized)


class SpatialGradient3d(nn.Module):
    r"""Compute the first and second order volume derivative in x, y and d using a diff operator.

    Args:
        mode: derivatives modality, can be: `sobel` or `diff`.
        order: the order of the derivatives.

    Return:
        the spatial gradients of the input feature map.

    Shape:
        - Input: :math:`(B, C, D, H, W)`. D, H, W are spatial dimensions, gradient is calculated w.r.t to them.
        - Output: :math:`(B, C, 3, D, H, W)` or :math:`(B, C, 6, D, H, W)`

    Examples:
        >>> input = torch.rand(1, 4, 2, 4, 4)
        >>> output = SpatialGradient3d()(input)
        >>> output.shape
        torch.Size([1, 4, 3, 2, 4, 4])
    """

    def __init__(self, mode: str = 'diff', order: int = 1) -> None:
        super().__init__()
        self.order: int = order
        self.mode: str = mode
        self.kernel = get_spatial_gradient_kernel3d(mode, order)
        return

    def __repr__(self) -> str:
        return self.__class__.__name__ + '(' 'order=' + str(self.order) + ', ' + 'mode=' + self.mode + ')'

    def forward(self, input: torch.Tensor) -> torch.Tensor:  # type: ignore
        return spatial_gradient3d(input, self.mode, self.order)


class Sobel(nn.Module):
    r"""Compute the Sobel operator and returns the magnitude per channel.

    Args:
        normalized: if True, L1 norm of the kernel is set to 1.
        eps: regularization number to avoid NaN during backprop.

    Return:
        the sobel edge gradient magnitudes map.

    Shape:
        - Input: :math:`(B, C, H, W)`
        - Output: :math:`(B, C, H, W)`

    Examples:
        >>> input = torch.rand(1, 3, 4, 4)
        >>> output = Sobel()(input)  # 1x3x4x4
    """

    def __init__(self, normalized: bool = True, eps: float = 1e-6) -> None:
        super().__init__()
        self.normalized: bool = normalized
        self.eps: float = eps

    def __repr__(self) -> str:
        return self.__class__.__name__ + '(' 'normalized=' + str(self.normalized) + ')'

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return sobel(input, self.normalized, self.eps)