File size: 11,036 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from typing import List

import torch
import torch.nn.functional as F

from .kernels import normalize_kernel2d


def _compute_padding(kernel_size: List[int]) -> List[int]:
    """Compute padding tuple."""
    # 4 or 6 ints:  (padding_left, padding_right,padding_top,padding_bottom)
    # https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
    if len(kernel_size) < 2:
        raise AssertionError(kernel_size)
    computed = [k - 1 for k in kernel_size]

    # for even kernels we need to do asymmetric padding :(
    out_padding = 2 * len(kernel_size) * [0]

    for i in range(len(kernel_size)):
        computed_tmp = computed[-(i + 1)]

        pad_front = computed_tmp // 2
        pad_rear = computed_tmp - pad_front

        out_padding[2 * i + 0] = pad_front
        out_padding[2 * i + 1] = pad_rear

    return out_padding


def filter2d(
    input: torch.Tensor,
    kernel: torch.Tensor,
    border_type: str = 'reflect',
    normalized: bool = False,
    padding: str = 'same',
) -> torch.Tensor:
    r"""Convolve a tensor with a 2d kernel.

    The function applies a given kernel to a tensor. The kernel is applied
    independently at each depth channel of the tensor. Before applying the
    kernel, the function applies padding according to the specified mode so
    that the output remains in the same shape.

    Args:
        input: the input tensor with shape of
          :math:`(B, C, H, W)`.
        kernel: the kernel to be convolved with the input
          tensor. The kernel shape must be :math:`(1, kH, kW)` or :math:`(B, kH, kW)`.
        border_type: the padding mode to be applied before convolving.
          The expected modes are: ``'constant'``, ``'reflect'``,
          ``'replicate'`` or ``'circular'``.
        normalized: If True, kernel will be L1 normalized.
        padding: This defines the type of padding.
          2 modes available ``'same'`` or ``'valid'``.

    Return:
        torch.Tensor: the convolved tensor of same size and numbers of channels
        as the input with shape :math:`(B, C, H, W)`.

    Example:
        >>> input = torch.tensor([[[
        ...    [0., 0., 0., 0., 0.],
        ...    [0., 0., 0., 0., 0.],
        ...    [0., 0., 5., 0., 0.],
        ...    [0., 0., 0., 0., 0.],
        ...    [0., 0., 0., 0., 0.],]]])
        >>> kernel = torch.ones(1, 3, 3)
        >>> filter2d(input, kernel, padding='same')
        tensor([[[[0., 0., 0., 0., 0.],
                  [0., 5., 5., 5., 0.],
                  [0., 5., 5., 5., 0.],
                  [0., 5., 5., 5., 0.],
                  [0., 0., 0., 0., 0.]]]])
    """
    if not isinstance(input, torch.Tensor):
        raise TypeError(f"Input input is not torch.Tensor. Got {type(input)}")

    if not isinstance(kernel, torch.Tensor):
        raise TypeError(f"Input kernel is not torch.Tensor. Got {type(kernel)}")

    if not isinstance(border_type, str):
        raise TypeError(f"Input border_type is not string. Got {type(border_type)}")

    if border_type not in ['constant', 'reflect', 'replicate', 'circular']:
        raise ValueError(
            f"Invalid border type, we expect 'constant', \
        'reflect', 'replicate', 'circular'. Got:{border_type}"
        )

    if not isinstance(padding, str):
        raise TypeError(f"Input padding is not string. Got {type(padding)}")

    if padding not in ['valid', 'same']:
        raise ValueError(f"Invalid padding mode, we expect 'valid' or 'same'. Got: {padding}")

    if not len(input.shape) == 4:
        raise ValueError(f"Invalid input shape, we expect BxCxHxW. Got: {input.shape}")

    if (not len(kernel.shape) == 3) and not ((kernel.shape[0] == 0) or (kernel.shape[0] == input.shape[0])):
        raise ValueError(f"Invalid kernel shape, we expect 1xHxW or BxHxW. Got: {kernel.shape}")

    # prepare kernel
    b, c, h, w = input.shape
    tmp_kernel: torch.Tensor = kernel.unsqueeze(1).to(input)

    if normalized:
        tmp_kernel = normalize_kernel2d(tmp_kernel)

    tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)

    height, width = tmp_kernel.shape[-2:]

    # pad the input tensor
    if padding == 'same':
        padding_shape: List[int] = _compute_padding([height, width])
        input = F.pad(input, padding_shape, mode=border_type)

    # kernel and input tensor reshape to align element-wise or batch-wise params
    tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
    input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))

    # convolve the tensor with the kernel.
    output = F.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)

    if padding == 'same':
        out = output.view(b, c, h, w)
    else:
        out = output.view(b, c, h - height + 1, w - width + 1)

    return out


def filter2d_separable(
    input: torch.Tensor,
    kernel_x: torch.Tensor,
    kernel_y: torch.Tensor,
    border_type: str = 'reflect',
    normalized: bool = False,
    padding: str = 'same',
) -> torch.Tensor:
    r"""Convolve a tensor with two 1d kernels, in x and y directions.

    The function applies a given kernel to a tensor. The kernel is applied
    independently at each depth channel of the tensor. Before applying the
    kernel, the function applies padding according to the specified mode so
    that the output remains in the same shape.

    Args:
        input: the input tensor with shape of
          :math:`(B, C, H, W)`.
        kernel_x: the kernel to be convolved with the input
          tensor. The kernel shape must be :math:`(1, kW)` or :math:`(B, kW)`.
        kernel_y: the kernel to be convolved with the input
          tensor. The kernel shape must be :math:`(1, kH)` or :math:`(B, kH)`.
        border_type: the padding mode to be applied before convolving.
          The expected modes are: ``'constant'``, ``'reflect'``,
          ``'replicate'`` or ``'circular'``.
        normalized: If True, kernel will be L1 normalized.
        padding: This defines the type of padding.
          2 modes available ``'same'`` or ``'valid'``.

    Return:
        torch.Tensor: the convolved tensor of same size and numbers of channels
        as the input with shape :math:`(B, C, H, W)`.

    Example:
        >>> input = torch.tensor([[[
        ...    [0., 0., 0., 0., 0.],
        ...    [0., 0., 0., 0., 0.],
        ...    [0., 0., 5., 0., 0.],
        ...    [0., 0., 0., 0., 0.],
        ...    [0., 0., 0., 0., 0.],]]])
        >>> kernel = torch.ones(1, 3)

        >>> filter2d_separable(input, kernel, kernel, padding='same')
        tensor([[[[0., 0., 0., 0., 0.],
                  [0., 5., 5., 5., 0.],
                  [0., 5., 5., 5., 0.],
                  [0., 5., 5., 5., 0.],
                  [0., 0., 0., 0., 0.]]]])
    """
    out_x = filter2d(input, kernel_x.unsqueeze(0), border_type, normalized, padding)
    out = filter2d(out_x, kernel_y.unsqueeze(-1), border_type, normalized, padding)
    return out


def filter3d(
    input: torch.Tensor, kernel: torch.Tensor, border_type: str = 'replicate', normalized: bool = False
) -> torch.Tensor:
    r"""Convolve a tensor with a 3d kernel.

    The function applies a given kernel to a tensor. The kernel is applied
    independently at each depth channel of the tensor. Before applying the
    kernel, the function applies padding according to the specified mode so
    that the output remains in the same shape.

    Args:
        input: the input tensor with shape of
          :math:`(B, C, D, H, W)`.
        kernel: the kernel to be convolved with the input
          tensor. The kernel shape must be :math:`(1, kD, kH, kW)`  or :math:`(B, kD, kH, kW)`.
        border_type: the padding mode to be applied before convolving.
          The expected modes are: ``'constant'``,
          ``'replicate'`` or ``'circular'``.
        normalized: If True, kernel will be L1 normalized.

    Return:
        the convolved tensor of same size and numbers of channels
        as the input with shape :math:`(B, C, D, H, W)`.

    Example:
        >>> input = torch.tensor([[[
        ...    [[0., 0., 0., 0., 0.],
        ...     [0., 0., 0., 0., 0.],
        ...     [0., 0., 0., 0., 0.],
        ...     [0., 0., 0., 0., 0.],
        ...     [0., 0., 0., 0., 0.]],
        ...    [[0., 0., 0., 0., 0.],
        ...     [0., 0., 0., 0., 0.],
        ...     [0., 0., 5., 0., 0.],
        ...     [0., 0., 0., 0., 0.],
        ...     [0., 0., 0., 0., 0.]],
        ...    [[0., 0., 0., 0., 0.],
        ...     [0., 0., 0., 0., 0.],
        ...     [0., 0., 0., 0., 0.],
        ...     [0., 0., 0., 0., 0.],
        ...     [0., 0., 0., 0., 0.]]
        ... ]]])
        >>> kernel = torch.ones(1, 3, 3, 3)
        >>> filter3d(input, kernel)
        tensor([[[[[0., 0., 0., 0., 0.],
                   [0., 5., 5., 5., 0.],
                   [0., 5., 5., 5., 0.],
                   [0., 5., 5., 5., 0.],
                   [0., 0., 0., 0., 0.]],
        <BLANKLINE>
                  [[0., 0., 0., 0., 0.],
                   [0., 5., 5., 5., 0.],
                   [0., 5., 5., 5., 0.],
                   [0., 5., 5., 5., 0.],
                   [0., 0., 0., 0., 0.]],
        <BLANKLINE>
                  [[0., 0., 0., 0., 0.],
                   [0., 5., 5., 5., 0.],
                   [0., 5., 5., 5., 0.],
                   [0., 5., 5., 5., 0.],
                   [0., 0., 0., 0., 0.]]]]])
    """
    if not isinstance(input, torch.Tensor):
        raise TypeError(f"Input border_type is not torch.Tensor. Got {type(input)}")

    if not isinstance(kernel, torch.Tensor):
        raise TypeError(f"Input border_type is not torch.Tensor. Got {type(kernel)}")

    if not isinstance(border_type, str):
        raise TypeError(f"Input border_type is not string. Got {type(kernel)}")

    if not len(input.shape) == 5:
        raise ValueError(f"Invalid input shape, we expect BxCxDxHxW. Got: {input.shape}")

    if not len(kernel.shape) == 4 and kernel.shape[0] != 1:
        raise ValueError(f"Invalid kernel shape, we expect 1xDxHxW. Got: {kernel.shape}")

    # prepare kernel
    b, c, d, h, w = input.shape
    tmp_kernel: torch.Tensor = kernel.unsqueeze(1).to(input)

    if normalized:
        bk, dk, hk, wk = kernel.shape
        tmp_kernel = normalize_kernel2d(tmp_kernel.view(bk, dk, hk * wk)).view_as(tmp_kernel)

    tmp_kernel = tmp_kernel.expand(-1, c, -1, -1, -1)

    # pad the input tensor
    depth, height, width = tmp_kernel.shape[-3:]
    padding_shape: List[int] = _compute_padding([depth, height, width])
    input_pad: torch.Tensor = F.pad(input, padding_shape, mode=border_type)

    # kernel and input tensor reshape to align element-wise or batch-wise params
    tmp_kernel = tmp_kernel.reshape(-1, 1, depth, height, width)
    input_pad = input_pad.view(-1, tmp_kernel.size(0), input_pad.size(-3), input_pad.size(-2), input_pad.size(-1))

    # convolve the tensor with the kernel.
    output = F.conv3d(input_pad, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)

    return output.view(b, c, d, h, w)