File size: 25,239 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
import math
from math import sqrt
from typing import List, Optional, Tuple

import torch


def normalize_kernel2d(input: torch.Tensor) -> torch.Tensor:
    r"""Normalize both derivative and smoothing kernel."""
    if len(input.size()) < 2:
        raise TypeError(f"input should be at least 2D tensor. Got {input.size()}")
    norm: torch.Tensor = input.abs().sum(dim=-1).sum(dim=-1)
    return input / (norm.unsqueeze(-1).unsqueeze(-1))


def gaussian(window_size: int, sigma: float) -> torch.Tensor:
    device, dtype = None, None
    if isinstance(sigma, torch.Tensor):
        device, dtype = sigma.device, sigma.dtype
    x = torch.arange(window_size, device=device, dtype=dtype) - window_size // 2
    if window_size % 2 == 0:
        x = x + 0.5

    gauss = torch.exp((-x.pow(2.0) / (2 * sigma**2)).float())
    return gauss / gauss.sum()


def gaussian_discrete_erf(window_size: int, sigma) -> torch.Tensor:
    r"""Discrete Gaussian by interpolating the error function.

    Adapted from:
    https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py
    """
    device = sigma.device if isinstance(sigma, torch.Tensor) else None
    sigma = torch.as_tensor(sigma, dtype=torch.float, device=device)
    x = torch.arange(window_size).float() - window_size // 2
    t = 0.70710678 / torch.abs(sigma)
    gauss = 0.5 * ((t * (x + 0.5)).erf() - (t * (x - 0.5)).erf())
    gauss = gauss.clamp(min=0)
    return gauss / gauss.sum()


def _modified_bessel_0(x: torch.Tensor) -> torch.Tensor:
    r"""Adapted from:

    https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py
    """
    if torch.abs(x) < 3.75:
        y = (x / 3.75) * (x / 3.75)
        return 1.0 + y * (
            3.5156229 + y * (3.0899424 + y * (1.2067492 + y * (0.2659732 + y * (0.360768e-1 + y * 0.45813e-2))))
        )
    ax = torch.abs(x)
    y = 3.75 / ax
    ans = 0.916281e-2 + y * (-0.2057706e-1 + y * (0.2635537e-1 + y * (-0.1647633e-1 + y * 0.392377e-2)))
    coef = 0.39894228 + y * (0.1328592e-1 + y * (0.225319e-2 + y * (-0.157565e-2 + y * ans)))
    return (torch.exp(ax) / torch.sqrt(ax)) * coef


def _modified_bessel_1(x: torch.Tensor) -> torch.Tensor:
    r"""adapted from:

    https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py
    """
    if torch.abs(x) < 3.75:
        y = (x / 3.75) * (x / 3.75)
        ans = 0.51498869 + y * (0.15084934 + y * (0.2658733e-1 + y * (0.301532e-2 + y * 0.32411e-3)))
        return torch.abs(x) * (0.5 + y * (0.87890594 + y * ans))
    ax = torch.abs(x)
    y = 3.75 / ax
    ans = 0.2282967e-1 + y * (-0.2895312e-1 + y * (0.1787654e-1 - y * 0.420059e-2))
    ans = 0.39894228 + y * (-0.3988024e-1 + y * (-0.362018e-2 + y * (0.163801e-2 + y * (-0.1031555e-1 + y * ans))))
    ans = ans * torch.exp(ax) / torch.sqrt(ax)
    return -ans if x < 0.0 else ans


def _modified_bessel_i(n: int, x: torch.Tensor) -> torch.Tensor:
    r"""adapted from:

    https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py
    """
    if n < 2:
        raise ValueError("n must be greater than 1.")
    if x == 0.0:
        return x
    device = x.device
    tox = 2.0 / torch.abs(x)
    ans = torch.tensor(0.0, device=device)
    bip = torch.tensor(0.0, device=device)
    bi = torch.tensor(1.0, device=device)
    m = int(2 * (n + int(sqrt(40.0 * n))))
    for j in range(m, 0, -1):
        bim = bip + float(j) * tox * bi
        bip = bi
        bi = bim
        if abs(bi) > 1.0e10:
            ans = ans * 1.0e-10
            bi = bi * 1.0e-10
            bip = bip * 1.0e-10
        if j == n:
            ans = bip
    ans = ans * _modified_bessel_0(x) / bi
    return -ans if x < 0.0 and (n % 2) == 1 else ans


def gaussian_discrete(window_size, sigma) -> torch.Tensor:
    r"""Discrete Gaussian kernel based on the modified Bessel functions.

    Adapted from:
    https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py
    """
    device = sigma.device if isinstance(sigma, torch.Tensor) else None
    sigma = torch.as_tensor(sigma, dtype=torch.float, device=device)
    sigma2 = sigma * sigma
    tail = int(window_size // 2)
    out_pos: List[Optional[torch.Tensor]] = [None] * (tail + 1)
    out_pos[0] = _modified_bessel_0(sigma2)
    out_pos[1] = _modified_bessel_1(sigma2)
    for k in range(2, len(out_pos)):
        out_pos[k] = _modified_bessel_i(k, sigma2)
    out = out_pos[:0:-1]
    out.extend(out_pos)
    out = torch.stack(out) * torch.exp(sigma2)  # type: ignore
    return out / out.sum()  # type: ignore


def laplacian_1d(window_size) -> torch.Tensor:
    r"""One could also use the Laplacian of Gaussian formula to design the filter."""

    filter_1d = torch.ones(window_size)
    filter_1d[window_size // 2] = 1 - window_size
    laplacian_1d: torch.Tensor = filter_1d
    return laplacian_1d


def get_box_kernel2d(kernel_size: Tuple[int, int]) -> torch.Tensor:
    r"""Utility function that returns a box filter."""
    kx: float = float(kernel_size[0])
    ky: float = float(kernel_size[1])
    scale: torch.Tensor = torch.tensor(1.0) / torch.tensor([kx * ky])
    tmp_kernel: torch.Tensor = torch.ones(1, kernel_size[0], kernel_size[1])
    return scale.to(tmp_kernel.dtype) * tmp_kernel


def get_binary_kernel2d(window_size: Tuple[int, int]) -> torch.Tensor:
    r"""Create a binary kernel to extract the patches.

    If the window size is HxW will create a (H*W)xHxW kernel.
    """
    window_range: int = window_size[0] * window_size[1]
    kernel: torch.Tensor = torch.zeros(window_range, window_range)
    for i in range(window_range):
        kernel[i, i] += 1.0
    return kernel.view(window_range, 1, window_size[0], window_size[1])


def get_sobel_kernel_3x3() -> torch.Tensor:
    """Utility function that returns a sobel kernel of 3x3."""
    return torch.tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]])


def get_sobel_kernel_5x5_2nd_order() -> torch.Tensor:
    """Utility function that returns a 2nd order sobel kernel of 5x5."""
    return torch.tensor(
        [
            [-1.0, 0.0, 2.0, 0.0, -1.0],
            [-4.0, 0.0, 8.0, 0.0, -4.0],
            [-6.0, 0.0, 12.0, 0.0, -6.0],
            [-4.0, 0.0, 8.0, 0.0, -4.0],
            [-1.0, 0.0, 2.0, 0.0, -1.0],
        ]
    )


def _get_sobel_kernel_5x5_2nd_order_xy() -> torch.Tensor:
    """Utility function that returns a 2nd order sobel kernel of 5x5."""
    return torch.tensor(
        [
            [-1.0, -2.0, 0.0, 2.0, 1.0],
            [-2.0, -4.0, 0.0, 4.0, 2.0],
            [0.0, 0.0, 0.0, 0.0, 0.0],
            [2.0, 4.0, 0.0, -4.0, -2.0],
            [1.0, 2.0, 0.0, -2.0, -1.0],
        ]
    )


def get_diff_kernel_3x3() -> torch.Tensor:
    """Utility function that returns a first order derivative kernel of 3x3."""
    return torch.tensor([[-0.0, 0.0, 0.0], [-1.0, 0.0, 1.0], [-0.0, 0.0, 0.0]])


def get_diff_kernel3d(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
    """Utility function that returns a first order derivative kernel of 3x3x3."""
    kernel: torch.Tensor = torch.tensor(
        [
            [
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                [[0.0, 0.0, 0.0], [-0.5, 0.0, 0.5], [0.0, 0.0, 0.0]],
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
            ],
            [
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                [[0.0, -0.5, 0.0], [0.0, 0.0, 0.0], [0.0, 0.5, 0.0]],
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
            ],
            [
                [[0.0, 0.0, 0.0], [0.0, -0.5, 0.0], [0.0, 0.0, 0.0]],
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                [[0.0, 0.0, 0.0], [0.0, 0.5, 0.0], [0.0, 0.0, 0.0]],
            ],
        ],
        device=device,
        dtype=dtype,
    )
    return kernel.unsqueeze(1)


def get_diff_kernel3d_2nd_order(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
    """Utility function that returns a first order derivative kernel of 3x3x3."""
    kernel: torch.Tensor = torch.tensor(
        [
            [
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                [[0.0, 0.0, 0.0], [1.0, -2.0, 1.0], [0.0, 0.0, 0.0]],
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
            ],
            [
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                [[0.0, 1.0, 0.0], [0.0, -2.0, 0.0], [0.0, 1.0, 0.0]],
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
            ],
            [
                [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
                [[0.0, 0.0, 0.0], [0.0, -2.0, 0.0], [0.0, 0.0, 0.0]],
                [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
            ],
            [
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                [[1.0, 0.0, -1.0], [0.0, 0.0, 0.0], [-1.0, 0.0, 1.0]],
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
            ],
            [
                [[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, -1.0, 0.0]],
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                [[0.0, -1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]],
            ],
            [
                [[0.0, 0.0, 0.0], [1.0, 0.0, -1.0], [0.0, 0.0, 0.0]],
                [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                [[0.0, 0.0, 0.0], [-1.0, 0.0, 1.0], [0.0, 0.0, 0.0]],
            ],
        ],
        device=device,
        dtype=dtype,
    )
    return kernel.unsqueeze(1)


def get_sobel_kernel2d() -> torch.Tensor:
    kernel_x: torch.Tensor = get_sobel_kernel_3x3()
    kernel_y: torch.Tensor = kernel_x.transpose(0, 1)
    return torch.stack([kernel_x, kernel_y])


def get_diff_kernel2d() -> torch.Tensor:
    kernel_x: torch.Tensor = get_diff_kernel_3x3()
    kernel_y: torch.Tensor = kernel_x.transpose(0, 1)
    return torch.stack([kernel_x, kernel_y])


def get_sobel_kernel2d_2nd_order() -> torch.Tensor:
    gxx: torch.Tensor = get_sobel_kernel_5x5_2nd_order()
    gyy: torch.Tensor = gxx.transpose(0, 1)
    gxy: torch.Tensor = _get_sobel_kernel_5x5_2nd_order_xy()
    return torch.stack([gxx, gxy, gyy])


def get_diff_kernel2d_2nd_order() -> torch.Tensor:
    gxx: torch.Tensor = torch.tensor([[0.0, 0.0, 0.0], [1.0, -2.0, 1.0], [0.0, 0.0, 0.0]])
    gyy: torch.Tensor = gxx.transpose(0, 1)
    gxy: torch.Tensor = torch.tensor([[-1.0, 0.0, 1.0], [0.0, 0.0, 0.0], [1.0, 0.0, -1.0]])
    return torch.stack([gxx, gxy, gyy])


def get_spatial_gradient_kernel2d(mode: str, order: int) -> torch.Tensor:
    r"""Function that returns kernel for 1st or 2nd order image gradients, using one of the following operators:

    sobel, diff.
    """
    if mode not in ['sobel', 'diff']:
        raise TypeError(
            "mode should be either sobel\
                         or diff. Got {}".format(
                mode
            )
        )
    if order not in [1, 2]:
        raise TypeError(
            "order should be either 1 or 2\
                         Got {}".format(
                order
            )
        )
    if mode == 'sobel' and order == 1:
        kernel: torch.Tensor = get_sobel_kernel2d()
    elif mode == 'sobel' and order == 2:
        kernel = get_sobel_kernel2d_2nd_order()
    elif mode == 'diff' and order == 1:
        kernel = get_diff_kernel2d()
    elif mode == 'diff' and order == 2:
        kernel = get_diff_kernel2d_2nd_order()
    else:
        raise NotImplementedError("")
    return kernel


def get_spatial_gradient_kernel3d(mode: str, order: int, device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
    r"""Function that returns kernel for 1st or 2nd order scale pyramid gradients, using one of the following
    operators: sobel, diff."""
    if mode not in ['sobel', 'diff']:
        raise TypeError(
            "mode should be either sobel\
                         or diff. Got {}".format(
                mode
            )
        )
    if order not in [1, 2]:
        raise TypeError(
            "order should be either 1 or 2\
                         Got {}".format(
                order
            )
        )
    if mode == 'sobel':
        raise NotImplementedError("Sobel kernel for 3d gradient is not implemented yet")
    if mode == 'diff' and order == 1:
        kernel = get_diff_kernel3d(device, dtype)
    elif mode == 'diff' and order == 2:
        kernel = get_diff_kernel3d_2nd_order(device, dtype)
    else:
        raise NotImplementedError("")
    return kernel


def get_gaussian_kernel1d(kernel_size: int, sigma: float, force_even: bool = False) -> torch.Tensor:
    r"""Function that returns Gaussian filter coefficients.

    Args:
        kernel_size: filter size. It should be odd and positive.
        sigma: gaussian standard deviation.
        force_even: overrides requirement for odd kernel size.

    Returns:
        1D tensor with gaussian filter coefficients.

    Shape:
        - Output: :math:`(\text{kernel_size})`

    Examples:

        >>> get_gaussian_kernel1d(3, 2.5)
        tensor([0.3243, 0.3513, 0.3243])

        >>> get_gaussian_kernel1d(5, 1.5)
        tensor([0.1201, 0.2339, 0.2921, 0.2339, 0.1201])
    """
    if not isinstance(kernel_size, int) or ((kernel_size % 2 == 0) and not force_even) or (kernel_size <= 0):
        raise TypeError("kernel_size must be an odd positive integer. " "Got {}".format(kernel_size))
    window_1d: torch.Tensor = gaussian(kernel_size, sigma)
    return window_1d


def get_gaussian_discrete_kernel1d(kernel_size: int, sigma: float, force_even: bool = False) -> torch.Tensor:
    r"""Function that returns Gaussian filter coefficients based on the modified Bessel functions. Adapted from:
    https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py.

    Args:
        kernel_size: filter size. It should be odd and positive.
        sigma: gaussian standard deviation.
        force_even: overrides requirement for odd kernel size.

    Returns:
        1D tensor with gaussian filter coefficients.

    Shape:
        - Output: :math:`(\text{kernel_size})`

    Examples:

        >>> get_gaussian_discrete_kernel1d(3, 2.5)
        tensor([0.3235, 0.3531, 0.3235])

        >>> get_gaussian_discrete_kernel1d(5, 1.5)
        tensor([0.1096, 0.2323, 0.3161, 0.2323, 0.1096])
    """
    if not isinstance(kernel_size, int) or ((kernel_size % 2 == 0) and not force_even) or (kernel_size <= 0):
        raise TypeError("kernel_size must be an odd positive integer. " "Got {}".format(kernel_size))
    window_1d = gaussian_discrete(kernel_size, sigma)
    return window_1d


def get_gaussian_erf_kernel1d(kernel_size: int, sigma: float, force_even: bool = False) -> torch.Tensor:
    r"""Function that returns Gaussian filter coefficients by interpolating the error function, adapted from:
    https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py.

    Args:
        kernel_size: filter size. It should be odd and positive.
        sigma: gaussian standard deviation.
        force_even: overrides requirement for odd kernel size.

    Returns:
        1D tensor with gaussian filter coefficients.

    Shape:
        - Output: :math:`(\text{kernel_size})`

    Examples:

        >>> get_gaussian_erf_kernel1d(3, 2.5)
        tensor([0.3245, 0.3511, 0.3245])

        >>> get_gaussian_erf_kernel1d(5, 1.5)
        tensor([0.1226, 0.2331, 0.2887, 0.2331, 0.1226])
    """
    if not isinstance(kernel_size, int) or ((kernel_size % 2 == 0) and not force_even) or (kernel_size <= 0):
        raise TypeError("kernel_size must be an odd positive integer. " "Got {}".format(kernel_size))
    window_1d = gaussian_discrete_erf(kernel_size, sigma)
    return window_1d


def get_gaussian_kernel2d(
    kernel_size: Tuple[int, int], sigma: Tuple[float, float], force_even: bool = False
) -> torch.Tensor:
    r"""Function that returns Gaussian filter matrix coefficients.

    Args:
        kernel_size: filter sizes in the x and y direction.
         Sizes should be odd and positive.
        sigma: gaussian standard deviation in the x and y
         direction.
        force_even: overrides requirement for odd kernel size.

    Returns:
        2D tensor with gaussian filter matrix coefficients.

    Shape:
        - Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)`

    Examples:
        >>> get_gaussian_kernel2d((3, 3), (1.5, 1.5))
        tensor([[0.0947, 0.1183, 0.0947],
                [0.1183, 0.1478, 0.1183],
                [0.0947, 0.1183, 0.0947]])
        >>> get_gaussian_kernel2d((3, 5), (1.5, 1.5))
        tensor([[0.0370, 0.0720, 0.0899, 0.0720, 0.0370],
                [0.0462, 0.0899, 0.1123, 0.0899, 0.0462],
                [0.0370, 0.0720, 0.0899, 0.0720, 0.0370]])
    """
    if not isinstance(kernel_size, tuple) or len(kernel_size) != 2:
        raise TypeError(f"kernel_size must be a tuple of length two. Got {kernel_size}")
    if not isinstance(sigma, tuple) or len(sigma) != 2:
        raise TypeError(f"sigma must be a tuple of length two. Got {sigma}")
    ksize_x, ksize_y = kernel_size
    sigma_x, sigma_y = sigma
    kernel_x: torch.Tensor = get_gaussian_kernel1d(ksize_x, sigma_x, force_even)
    kernel_y: torch.Tensor = get_gaussian_kernel1d(ksize_y, sigma_y, force_even)
    kernel_2d: torch.Tensor = torch.matmul(kernel_x.unsqueeze(-1), kernel_y.unsqueeze(-1).t())
    return kernel_2d


def get_laplacian_kernel1d(kernel_size: int) -> torch.Tensor:
    r"""Function that returns the coefficients of a 1D Laplacian filter.

    Args:
        kernel_size: filter size. It should be odd and positive.

    Returns:
        1D tensor with laplacian filter coefficients.

    Shape:
        - Output: math:`(\text{kernel_size})`

    Examples:
        >>> get_laplacian_kernel1d(3)
        tensor([ 1., -2.,  1.])
        >>> get_laplacian_kernel1d(5)
        tensor([ 1.,  1., -4.,  1.,  1.])
    """
    if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or kernel_size <= 0:
        raise TypeError(f"ksize must be an odd positive integer. Got {kernel_size}")
    window_1d: torch.Tensor = laplacian_1d(kernel_size)
    return window_1d


def get_laplacian_kernel2d(kernel_size: int) -> torch.Tensor:
    r"""Function that returns Gaussian filter matrix coefficients.

    Args:
        kernel_size: filter size should be odd.

    Returns:
        2D tensor with laplacian filter matrix coefficients.

    Shape:
        - Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)`

    Examples:
        >>> get_laplacian_kernel2d(3)
        tensor([[ 1.,  1.,  1.],
                [ 1., -8.,  1.],
                [ 1.,  1.,  1.]])
        >>> get_laplacian_kernel2d(5)
        tensor([[  1.,   1.,   1.,   1.,   1.],
                [  1.,   1.,   1.,   1.,   1.],
                [  1.,   1., -24.,   1.,   1.],
                [  1.,   1.,   1.,   1.,   1.],
                [  1.,   1.,   1.,   1.,   1.]])
    """
    if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or kernel_size <= 0:
        raise TypeError(f"ksize must be an odd positive integer. Got {kernel_size}")

    kernel = torch.ones((kernel_size, kernel_size))
    mid = kernel_size // 2
    kernel[mid, mid] = 1 - kernel_size**2
    kernel_2d: torch.Tensor = kernel
    return kernel_2d


def get_pascal_kernel_2d(kernel_size: int, norm: bool = True) -> torch.Tensor:
    """Generate pascal filter kernel by kernel size.

    Args:
        kernel_size: height and width of the kernel.
        norm: if to normalize the kernel or not. Default: True.

    Returns:
        kernel shaped as :math:`(kernel_size, kernel_size)`

    Examples:
    >>> get_pascal_kernel_2d(1)
    tensor([[1.]])
    >>> get_pascal_kernel_2d(4)
    tensor([[0.0156, 0.0469, 0.0469, 0.0156],
            [0.0469, 0.1406, 0.1406, 0.0469],
            [0.0469, 0.1406, 0.1406, 0.0469],
            [0.0156, 0.0469, 0.0469, 0.0156]])
    >>> get_pascal_kernel_2d(4, norm=False)
    tensor([[1., 3., 3., 1.],
            [3., 9., 9., 3.],
            [3., 9., 9., 3.],
            [1., 3., 3., 1.]])
    """
    a = get_pascal_kernel_1d(kernel_size)

    filt = a[:, None] * a[None, :]
    if norm:
        filt = filt / torch.sum(filt)
    return filt


def get_pascal_kernel_1d(kernel_size: int, norm: bool = False) -> torch.Tensor:
    """Generate Yang Hui triangle (Pascal's triangle) by a given number.

    Args:
        kernel_size: height and width of the kernel.
        norm: if to normalize the kernel or not. Default: False.

    Returns:
        kernel shaped as :math:`(kernel_size,)`

    Examples:
    >>> get_pascal_kernel_1d(1)
    tensor([1.])
    >>> get_pascal_kernel_1d(2)
    tensor([1., 1.])
    >>> get_pascal_kernel_1d(3)
    tensor([1., 2., 1.])
    >>> get_pascal_kernel_1d(4)
    tensor([1., 3., 3., 1.])
    >>> get_pascal_kernel_1d(5)
    tensor([1., 4., 6., 4., 1.])
    >>> get_pascal_kernel_1d(6)
    tensor([ 1.,  5., 10., 10.,  5.,  1.])
    """
    pre: List[float] = []
    cur: List[float] = []
    for i in range(kernel_size):
        cur = [1.0] * (i + 1)

        for j in range(1, i // 2 + 1):
            value = pre[j - 1] + pre[j]
            cur[j] = value
            if i != 2 * j:
                cur[-j - 1] = value
        pre = cur

    out = torch.as_tensor(cur)
    if norm:
        out = out / torch.sum(out)
    return out


def get_canny_nms_kernel(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
    """Utility function that returns 3x3 kernels for the Canny Non-maximal suppression."""
    kernel: torch.Tensor = torch.tensor(
        [
            [[0.0, 0.0, 0.0], [0.0, 1.0, -1.0], [0.0, 0.0, 0.0]],
            [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]],
            [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0]],
            [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]],
            [[0.0, 0.0, 0.0], [-1.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
            [[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
            [[0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
            [[0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
        ],
        device=device,
        dtype=dtype,
    )
    return kernel.unsqueeze(1)


def get_hysteresis_kernel(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
    """Utility function that returns the 3x3 kernels for the Canny hysteresis."""
    kernel: torch.Tensor = torch.tensor(
        [
            [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]],
            [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]],
            [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]],
            [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]],
            [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
            [[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
            [[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
            [[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
        ],
        device=device,
        dtype=dtype,
    )
    return kernel.unsqueeze(1)


def get_hanning_kernel1d(kernel_size: int, device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
    r"""Returns Hanning (also known as Hann) kernel, used in signal processing and KCF tracker.

    .. math::  w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right)
               \\qquad 0 \\leq n \\leq M-1

    See further in numpy docs https://numpy.org/doc/stable/reference/generated/numpy.hanning.html

    Args:
        kernel_size: The size the of the kernel. It should be positive.

    Returns:
        1D tensor with Hanning filter coefficients.
            .. math::  w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right)

    Shape:
        - Output: math:`(\text{kernel_size})`

    Examples:
        >>> get_hanning_kernel1d(4)
        tensor([0.0000, 0.7500, 0.7500, 0.0000])
    """
    if not isinstance(kernel_size, int) or kernel_size <= 2:
        raise TypeError(f"ksize must be an positive integer > 2. Got {kernel_size}")

    x: torch.Tensor = torch.arange(kernel_size, device=device, dtype=dtype)
    x = 0.5 - 0.5 * torch.cos(2.0 * math.pi * x / float(kernel_size - 1))
    return x


def get_hanning_kernel2d(kernel_size: Tuple[int, int], device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
    r"""Returns 2d Hanning kernel, used in signal processing and KCF tracker.

    Args:
        kernel_size: The size of the kernel for the filter. It should be positive.

    Returns:
        2D tensor with Hanning filter coefficients.
            .. math::  w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right)

    Shape:
        - Output: math:`(\text{kernel_size[0], kernel_size[1]})`
    """
    if kernel_size[0] <= 2 or kernel_size[1] <= 2:
        raise TypeError(f"ksize must be an tuple of positive integers > 2. Got {kernel_size}")
    ky: torch.Tensor = get_hanning_kernel1d(kernel_size[0], device, dtype)[None].T
    kx: torch.Tensor = get_hanning_kernel1d(kernel_size[1], device, dtype)[None]
    kernel2d = ky @ kx
    return kernel2d