Spaces:
Running
on
A10G
Running
on
A10G
File size: 25,239 Bytes
320e465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
import math
from math import sqrt
from typing import List, Optional, Tuple
import torch
def normalize_kernel2d(input: torch.Tensor) -> torch.Tensor:
r"""Normalize both derivative and smoothing kernel."""
if len(input.size()) < 2:
raise TypeError(f"input should be at least 2D tensor. Got {input.size()}")
norm: torch.Tensor = input.abs().sum(dim=-1).sum(dim=-1)
return input / (norm.unsqueeze(-1).unsqueeze(-1))
def gaussian(window_size: int, sigma: float) -> torch.Tensor:
device, dtype = None, None
if isinstance(sigma, torch.Tensor):
device, dtype = sigma.device, sigma.dtype
x = torch.arange(window_size, device=device, dtype=dtype) - window_size // 2
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp((-x.pow(2.0) / (2 * sigma**2)).float())
return gauss / gauss.sum()
def gaussian_discrete_erf(window_size: int, sigma) -> torch.Tensor:
r"""Discrete Gaussian by interpolating the error function.
Adapted from:
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py
"""
device = sigma.device if isinstance(sigma, torch.Tensor) else None
sigma = torch.as_tensor(sigma, dtype=torch.float, device=device)
x = torch.arange(window_size).float() - window_size // 2
t = 0.70710678 / torch.abs(sigma)
gauss = 0.5 * ((t * (x + 0.5)).erf() - (t * (x - 0.5)).erf())
gauss = gauss.clamp(min=0)
return gauss / gauss.sum()
def _modified_bessel_0(x: torch.Tensor) -> torch.Tensor:
r"""Adapted from:
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py
"""
if torch.abs(x) < 3.75:
y = (x / 3.75) * (x / 3.75)
return 1.0 + y * (
3.5156229 + y * (3.0899424 + y * (1.2067492 + y * (0.2659732 + y * (0.360768e-1 + y * 0.45813e-2))))
)
ax = torch.abs(x)
y = 3.75 / ax
ans = 0.916281e-2 + y * (-0.2057706e-1 + y * (0.2635537e-1 + y * (-0.1647633e-1 + y * 0.392377e-2)))
coef = 0.39894228 + y * (0.1328592e-1 + y * (0.225319e-2 + y * (-0.157565e-2 + y * ans)))
return (torch.exp(ax) / torch.sqrt(ax)) * coef
def _modified_bessel_1(x: torch.Tensor) -> torch.Tensor:
r"""adapted from:
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py
"""
if torch.abs(x) < 3.75:
y = (x / 3.75) * (x / 3.75)
ans = 0.51498869 + y * (0.15084934 + y * (0.2658733e-1 + y * (0.301532e-2 + y * 0.32411e-3)))
return torch.abs(x) * (0.5 + y * (0.87890594 + y * ans))
ax = torch.abs(x)
y = 3.75 / ax
ans = 0.2282967e-1 + y * (-0.2895312e-1 + y * (0.1787654e-1 - y * 0.420059e-2))
ans = 0.39894228 + y * (-0.3988024e-1 + y * (-0.362018e-2 + y * (0.163801e-2 + y * (-0.1031555e-1 + y * ans))))
ans = ans * torch.exp(ax) / torch.sqrt(ax)
return -ans if x < 0.0 else ans
def _modified_bessel_i(n: int, x: torch.Tensor) -> torch.Tensor:
r"""adapted from:
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py
"""
if n < 2:
raise ValueError("n must be greater than 1.")
if x == 0.0:
return x
device = x.device
tox = 2.0 / torch.abs(x)
ans = torch.tensor(0.0, device=device)
bip = torch.tensor(0.0, device=device)
bi = torch.tensor(1.0, device=device)
m = int(2 * (n + int(sqrt(40.0 * n))))
for j in range(m, 0, -1):
bim = bip + float(j) * tox * bi
bip = bi
bi = bim
if abs(bi) > 1.0e10:
ans = ans * 1.0e-10
bi = bi * 1.0e-10
bip = bip * 1.0e-10
if j == n:
ans = bip
ans = ans * _modified_bessel_0(x) / bi
return -ans if x < 0.0 and (n % 2) == 1 else ans
def gaussian_discrete(window_size, sigma) -> torch.Tensor:
r"""Discrete Gaussian kernel based on the modified Bessel functions.
Adapted from:
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py
"""
device = sigma.device if isinstance(sigma, torch.Tensor) else None
sigma = torch.as_tensor(sigma, dtype=torch.float, device=device)
sigma2 = sigma * sigma
tail = int(window_size // 2)
out_pos: List[Optional[torch.Tensor]] = [None] * (tail + 1)
out_pos[0] = _modified_bessel_0(sigma2)
out_pos[1] = _modified_bessel_1(sigma2)
for k in range(2, len(out_pos)):
out_pos[k] = _modified_bessel_i(k, sigma2)
out = out_pos[:0:-1]
out.extend(out_pos)
out = torch.stack(out) * torch.exp(sigma2) # type: ignore
return out / out.sum() # type: ignore
def laplacian_1d(window_size) -> torch.Tensor:
r"""One could also use the Laplacian of Gaussian formula to design the filter."""
filter_1d = torch.ones(window_size)
filter_1d[window_size // 2] = 1 - window_size
laplacian_1d: torch.Tensor = filter_1d
return laplacian_1d
def get_box_kernel2d(kernel_size: Tuple[int, int]) -> torch.Tensor:
r"""Utility function that returns a box filter."""
kx: float = float(kernel_size[0])
ky: float = float(kernel_size[1])
scale: torch.Tensor = torch.tensor(1.0) / torch.tensor([kx * ky])
tmp_kernel: torch.Tensor = torch.ones(1, kernel_size[0], kernel_size[1])
return scale.to(tmp_kernel.dtype) * tmp_kernel
def get_binary_kernel2d(window_size: Tuple[int, int]) -> torch.Tensor:
r"""Create a binary kernel to extract the patches.
If the window size is HxW will create a (H*W)xHxW kernel.
"""
window_range: int = window_size[0] * window_size[1]
kernel: torch.Tensor = torch.zeros(window_range, window_range)
for i in range(window_range):
kernel[i, i] += 1.0
return kernel.view(window_range, 1, window_size[0], window_size[1])
def get_sobel_kernel_3x3() -> torch.Tensor:
"""Utility function that returns a sobel kernel of 3x3."""
return torch.tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]])
def get_sobel_kernel_5x5_2nd_order() -> torch.Tensor:
"""Utility function that returns a 2nd order sobel kernel of 5x5."""
return torch.tensor(
[
[-1.0, 0.0, 2.0, 0.0, -1.0],
[-4.0, 0.0, 8.0, 0.0, -4.0],
[-6.0, 0.0, 12.0, 0.0, -6.0],
[-4.0, 0.0, 8.0, 0.0, -4.0],
[-1.0, 0.0, 2.0, 0.0, -1.0],
]
)
def _get_sobel_kernel_5x5_2nd_order_xy() -> torch.Tensor:
"""Utility function that returns a 2nd order sobel kernel of 5x5."""
return torch.tensor(
[
[-1.0, -2.0, 0.0, 2.0, 1.0],
[-2.0, -4.0, 0.0, 4.0, 2.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
[2.0, 4.0, 0.0, -4.0, -2.0],
[1.0, 2.0, 0.0, -2.0, -1.0],
]
)
def get_diff_kernel_3x3() -> torch.Tensor:
"""Utility function that returns a first order derivative kernel of 3x3."""
return torch.tensor([[-0.0, 0.0, 0.0], [-1.0, 0.0, 1.0], [-0.0, 0.0, 0.0]])
def get_diff_kernel3d(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
"""Utility function that returns a first order derivative kernel of 3x3x3."""
kernel: torch.Tensor = torch.tensor(
[
[
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [-0.5, 0.0, 0.5], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
],
[
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, -0.5, 0.0], [0.0, 0.0, 0.0], [0.0, 0.5, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
],
[
[[0.0, 0.0, 0.0], [0.0, -0.5, 0.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 0.5, 0.0], [0.0, 0.0, 0.0]],
],
],
device=device,
dtype=dtype,
)
return kernel.unsqueeze(1)
def get_diff_kernel3d_2nd_order(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
"""Utility function that returns a first order derivative kernel of 3x3x3."""
kernel: torch.Tensor = torch.tensor(
[
[
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [1.0, -2.0, 1.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
],
[
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, 1.0, 0.0], [0.0, -2.0, 0.0], [0.0, 1.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
],
[
[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, -2.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
],
[
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[1.0, 0.0, -1.0], [0.0, 0.0, 0.0], [-1.0, 0.0, 1.0]],
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
],
[
[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, -1.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, -1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]],
],
[
[[0.0, 0.0, 0.0], [1.0, 0.0, -1.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [-1.0, 0.0, 1.0], [0.0, 0.0, 0.0]],
],
],
device=device,
dtype=dtype,
)
return kernel.unsqueeze(1)
def get_sobel_kernel2d() -> torch.Tensor:
kernel_x: torch.Tensor = get_sobel_kernel_3x3()
kernel_y: torch.Tensor = kernel_x.transpose(0, 1)
return torch.stack([kernel_x, kernel_y])
def get_diff_kernel2d() -> torch.Tensor:
kernel_x: torch.Tensor = get_diff_kernel_3x3()
kernel_y: torch.Tensor = kernel_x.transpose(0, 1)
return torch.stack([kernel_x, kernel_y])
def get_sobel_kernel2d_2nd_order() -> torch.Tensor:
gxx: torch.Tensor = get_sobel_kernel_5x5_2nd_order()
gyy: torch.Tensor = gxx.transpose(0, 1)
gxy: torch.Tensor = _get_sobel_kernel_5x5_2nd_order_xy()
return torch.stack([gxx, gxy, gyy])
def get_diff_kernel2d_2nd_order() -> torch.Tensor:
gxx: torch.Tensor = torch.tensor([[0.0, 0.0, 0.0], [1.0, -2.0, 1.0], [0.0, 0.0, 0.0]])
gyy: torch.Tensor = gxx.transpose(0, 1)
gxy: torch.Tensor = torch.tensor([[-1.0, 0.0, 1.0], [0.0, 0.0, 0.0], [1.0, 0.0, -1.0]])
return torch.stack([gxx, gxy, gyy])
def get_spatial_gradient_kernel2d(mode: str, order: int) -> torch.Tensor:
r"""Function that returns kernel for 1st or 2nd order image gradients, using one of the following operators:
sobel, diff.
"""
if mode not in ['sobel', 'diff']:
raise TypeError(
"mode should be either sobel\
or diff. Got {}".format(
mode
)
)
if order not in [1, 2]:
raise TypeError(
"order should be either 1 or 2\
Got {}".format(
order
)
)
if mode == 'sobel' and order == 1:
kernel: torch.Tensor = get_sobel_kernel2d()
elif mode == 'sobel' and order == 2:
kernel = get_sobel_kernel2d_2nd_order()
elif mode == 'diff' and order == 1:
kernel = get_diff_kernel2d()
elif mode == 'diff' and order == 2:
kernel = get_diff_kernel2d_2nd_order()
else:
raise NotImplementedError("")
return kernel
def get_spatial_gradient_kernel3d(mode: str, order: int, device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
r"""Function that returns kernel for 1st or 2nd order scale pyramid gradients, using one of the following
operators: sobel, diff."""
if mode not in ['sobel', 'diff']:
raise TypeError(
"mode should be either sobel\
or diff. Got {}".format(
mode
)
)
if order not in [1, 2]:
raise TypeError(
"order should be either 1 or 2\
Got {}".format(
order
)
)
if mode == 'sobel':
raise NotImplementedError("Sobel kernel for 3d gradient is not implemented yet")
if mode == 'diff' and order == 1:
kernel = get_diff_kernel3d(device, dtype)
elif mode == 'diff' and order == 2:
kernel = get_diff_kernel3d_2nd_order(device, dtype)
else:
raise NotImplementedError("")
return kernel
def get_gaussian_kernel1d(kernel_size: int, sigma: float, force_even: bool = False) -> torch.Tensor:
r"""Function that returns Gaussian filter coefficients.
Args:
kernel_size: filter size. It should be odd and positive.
sigma: gaussian standard deviation.
force_even: overrides requirement for odd kernel size.
Returns:
1D tensor with gaussian filter coefficients.
Shape:
- Output: :math:`(\text{kernel_size})`
Examples:
>>> get_gaussian_kernel1d(3, 2.5)
tensor([0.3243, 0.3513, 0.3243])
>>> get_gaussian_kernel1d(5, 1.5)
tensor([0.1201, 0.2339, 0.2921, 0.2339, 0.1201])
"""
if not isinstance(kernel_size, int) or ((kernel_size % 2 == 0) and not force_even) or (kernel_size <= 0):
raise TypeError("kernel_size must be an odd positive integer. " "Got {}".format(kernel_size))
window_1d: torch.Tensor = gaussian(kernel_size, sigma)
return window_1d
def get_gaussian_discrete_kernel1d(kernel_size: int, sigma: float, force_even: bool = False) -> torch.Tensor:
r"""Function that returns Gaussian filter coefficients based on the modified Bessel functions. Adapted from:
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py.
Args:
kernel_size: filter size. It should be odd and positive.
sigma: gaussian standard deviation.
force_even: overrides requirement for odd kernel size.
Returns:
1D tensor with gaussian filter coefficients.
Shape:
- Output: :math:`(\text{kernel_size})`
Examples:
>>> get_gaussian_discrete_kernel1d(3, 2.5)
tensor([0.3235, 0.3531, 0.3235])
>>> get_gaussian_discrete_kernel1d(5, 1.5)
tensor([0.1096, 0.2323, 0.3161, 0.2323, 0.1096])
"""
if not isinstance(kernel_size, int) or ((kernel_size % 2 == 0) and not force_even) or (kernel_size <= 0):
raise TypeError("kernel_size must be an odd positive integer. " "Got {}".format(kernel_size))
window_1d = gaussian_discrete(kernel_size, sigma)
return window_1d
def get_gaussian_erf_kernel1d(kernel_size: int, sigma: float, force_even: bool = False) -> torch.Tensor:
r"""Function that returns Gaussian filter coefficients by interpolating the error function, adapted from:
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py.
Args:
kernel_size: filter size. It should be odd and positive.
sigma: gaussian standard deviation.
force_even: overrides requirement for odd kernel size.
Returns:
1D tensor with gaussian filter coefficients.
Shape:
- Output: :math:`(\text{kernel_size})`
Examples:
>>> get_gaussian_erf_kernel1d(3, 2.5)
tensor([0.3245, 0.3511, 0.3245])
>>> get_gaussian_erf_kernel1d(5, 1.5)
tensor([0.1226, 0.2331, 0.2887, 0.2331, 0.1226])
"""
if not isinstance(kernel_size, int) or ((kernel_size % 2 == 0) and not force_even) or (kernel_size <= 0):
raise TypeError("kernel_size must be an odd positive integer. " "Got {}".format(kernel_size))
window_1d = gaussian_discrete_erf(kernel_size, sigma)
return window_1d
def get_gaussian_kernel2d(
kernel_size: Tuple[int, int], sigma: Tuple[float, float], force_even: bool = False
) -> torch.Tensor:
r"""Function that returns Gaussian filter matrix coefficients.
Args:
kernel_size: filter sizes in the x and y direction.
Sizes should be odd and positive.
sigma: gaussian standard deviation in the x and y
direction.
force_even: overrides requirement for odd kernel size.
Returns:
2D tensor with gaussian filter matrix coefficients.
Shape:
- Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)`
Examples:
>>> get_gaussian_kernel2d((3, 3), (1.5, 1.5))
tensor([[0.0947, 0.1183, 0.0947],
[0.1183, 0.1478, 0.1183],
[0.0947, 0.1183, 0.0947]])
>>> get_gaussian_kernel2d((3, 5), (1.5, 1.5))
tensor([[0.0370, 0.0720, 0.0899, 0.0720, 0.0370],
[0.0462, 0.0899, 0.1123, 0.0899, 0.0462],
[0.0370, 0.0720, 0.0899, 0.0720, 0.0370]])
"""
if not isinstance(kernel_size, tuple) or len(kernel_size) != 2:
raise TypeError(f"kernel_size must be a tuple of length two. Got {kernel_size}")
if not isinstance(sigma, tuple) or len(sigma) != 2:
raise TypeError(f"sigma must be a tuple of length two. Got {sigma}")
ksize_x, ksize_y = kernel_size
sigma_x, sigma_y = sigma
kernel_x: torch.Tensor = get_gaussian_kernel1d(ksize_x, sigma_x, force_even)
kernel_y: torch.Tensor = get_gaussian_kernel1d(ksize_y, sigma_y, force_even)
kernel_2d: torch.Tensor = torch.matmul(kernel_x.unsqueeze(-1), kernel_y.unsqueeze(-1).t())
return kernel_2d
def get_laplacian_kernel1d(kernel_size: int) -> torch.Tensor:
r"""Function that returns the coefficients of a 1D Laplacian filter.
Args:
kernel_size: filter size. It should be odd and positive.
Returns:
1D tensor with laplacian filter coefficients.
Shape:
- Output: math:`(\text{kernel_size})`
Examples:
>>> get_laplacian_kernel1d(3)
tensor([ 1., -2., 1.])
>>> get_laplacian_kernel1d(5)
tensor([ 1., 1., -4., 1., 1.])
"""
if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or kernel_size <= 0:
raise TypeError(f"ksize must be an odd positive integer. Got {kernel_size}")
window_1d: torch.Tensor = laplacian_1d(kernel_size)
return window_1d
def get_laplacian_kernel2d(kernel_size: int) -> torch.Tensor:
r"""Function that returns Gaussian filter matrix coefficients.
Args:
kernel_size: filter size should be odd.
Returns:
2D tensor with laplacian filter matrix coefficients.
Shape:
- Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)`
Examples:
>>> get_laplacian_kernel2d(3)
tensor([[ 1., 1., 1.],
[ 1., -8., 1.],
[ 1., 1., 1.]])
>>> get_laplacian_kernel2d(5)
tensor([[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.],
[ 1., 1., -24., 1., 1.],
[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.]])
"""
if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or kernel_size <= 0:
raise TypeError(f"ksize must be an odd positive integer. Got {kernel_size}")
kernel = torch.ones((kernel_size, kernel_size))
mid = kernel_size // 2
kernel[mid, mid] = 1 - kernel_size**2
kernel_2d: torch.Tensor = kernel
return kernel_2d
def get_pascal_kernel_2d(kernel_size: int, norm: bool = True) -> torch.Tensor:
"""Generate pascal filter kernel by kernel size.
Args:
kernel_size: height and width of the kernel.
norm: if to normalize the kernel or not. Default: True.
Returns:
kernel shaped as :math:`(kernel_size, kernel_size)`
Examples:
>>> get_pascal_kernel_2d(1)
tensor([[1.]])
>>> get_pascal_kernel_2d(4)
tensor([[0.0156, 0.0469, 0.0469, 0.0156],
[0.0469, 0.1406, 0.1406, 0.0469],
[0.0469, 0.1406, 0.1406, 0.0469],
[0.0156, 0.0469, 0.0469, 0.0156]])
>>> get_pascal_kernel_2d(4, norm=False)
tensor([[1., 3., 3., 1.],
[3., 9., 9., 3.],
[3., 9., 9., 3.],
[1., 3., 3., 1.]])
"""
a = get_pascal_kernel_1d(kernel_size)
filt = a[:, None] * a[None, :]
if norm:
filt = filt / torch.sum(filt)
return filt
def get_pascal_kernel_1d(kernel_size: int, norm: bool = False) -> torch.Tensor:
"""Generate Yang Hui triangle (Pascal's triangle) by a given number.
Args:
kernel_size: height and width of the kernel.
norm: if to normalize the kernel or not. Default: False.
Returns:
kernel shaped as :math:`(kernel_size,)`
Examples:
>>> get_pascal_kernel_1d(1)
tensor([1.])
>>> get_pascal_kernel_1d(2)
tensor([1., 1.])
>>> get_pascal_kernel_1d(3)
tensor([1., 2., 1.])
>>> get_pascal_kernel_1d(4)
tensor([1., 3., 3., 1.])
>>> get_pascal_kernel_1d(5)
tensor([1., 4., 6., 4., 1.])
>>> get_pascal_kernel_1d(6)
tensor([ 1., 5., 10., 10., 5., 1.])
"""
pre: List[float] = []
cur: List[float] = []
for i in range(kernel_size):
cur = [1.0] * (i + 1)
for j in range(1, i // 2 + 1):
value = pre[j - 1] + pre[j]
cur[j] = value
if i != 2 * j:
cur[-j - 1] = value
pre = cur
out = torch.as_tensor(cur)
if norm:
out = out / torch.sum(out)
return out
def get_canny_nms_kernel(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
"""Utility function that returns 3x3 kernels for the Canny Non-maximal suppression."""
kernel: torch.Tensor = torch.tensor(
[
[[0.0, 0.0, 0.0], [0.0, 1.0, -1.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]],
[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [-1.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
],
device=device,
dtype=dtype,
)
return kernel.unsqueeze(1)
def get_hysteresis_kernel(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
"""Utility function that returns the 3x3 kernels for the Canny hysteresis."""
kernel: torch.Tensor = torch.tensor(
[
[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]],
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]],
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
],
device=device,
dtype=dtype,
)
return kernel.unsqueeze(1)
def get_hanning_kernel1d(kernel_size: int, device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
r"""Returns Hanning (also known as Hann) kernel, used in signal processing and KCF tracker.
.. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right)
\\qquad 0 \\leq n \\leq M-1
See further in numpy docs https://numpy.org/doc/stable/reference/generated/numpy.hanning.html
Args:
kernel_size: The size the of the kernel. It should be positive.
Returns:
1D tensor with Hanning filter coefficients.
.. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right)
Shape:
- Output: math:`(\text{kernel_size})`
Examples:
>>> get_hanning_kernel1d(4)
tensor([0.0000, 0.7500, 0.7500, 0.0000])
"""
if not isinstance(kernel_size, int) or kernel_size <= 2:
raise TypeError(f"ksize must be an positive integer > 2. Got {kernel_size}")
x: torch.Tensor = torch.arange(kernel_size, device=device, dtype=dtype)
x = 0.5 - 0.5 * torch.cos(2.0 * math.pi * x / float(kernel_size - 1))
return x
def get_hanning_kernel2d(kernel_size: Tuple[int, int], device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor:
r"""Returns 2d Hanning kernel, used in signal processing and KCF tracker.
Args:
kernel_size: The size of the kernel for the filter. It should be positive.
Returns:
2D tensor with Hanning filter coefficients.
.. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right)
Shape:
- Output: math:`(\text{kernel_size[0], kernel_size[1]})`
"""
if kernel_size[0] <= 2 or kernel_size[1] <= 2:
raise TypeError(f"ksize must be an tuple of positive integers > 2. Got {kernel_size}")
ky: torch.Tensor = get_hanning_kernel1d(kernel_size[0], device, dtype)[None].T
kx: torch.Tensor = get_hanning_kernel1d(kernel_size[1], device, dtype)[None]
kernel2d = ky @ kx
return kernel2d |