File size: 16,965 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import logging
from omegaconf import DictConfig
from typing import List, Dict
import torch

from tracker.inference.object_manager import ObjectManager
from tracker.inference.kv_memory_store import KeyValueMemoryStore
from tracker.model.cutie import CUTIE
from tracker.model.utils.memory_utils import *

log = logging.getLogger()


class MemoryManager:
    """
    Manages all three memory stores and the transition between working/long-term memory
    """
    def __init__(self, cfg: DictConfig, object_manager: ObjectManager):
        self.object_manager = object_manager
        self.sensory_dim = cfg.model.sensory_dim
        self.top_k = cfg.top_k
        self.chunk_size = cfg.chunk_size

        self.save_aux = cfg.save_aux

        self.use_long_term = cfg.use_long_term
        self.count_long_term_usage = cfg.long_term.count_usage
        # subtract 1 because the first-frame is now counted as "permanent memory"
        # and is not counted towards max_mem_frames
        # but we want to keep the hyperparameters consistent as before for the same behavior
        if self.use_long_term:
            self.max_mem_frames = cfg.long_term.max_mem_frames - 1
            self.min_mem_frames = cfg.long_term.min_mem_frames - 1
            self.num_prototypes = cfg.long_term.num_prototypes
            self.max_long_tokens = cfg.long_term.max_num_tokens
            self.buffer_tokens = cfg.long_term.buffer_tokens
        else:
            self.max_mem_frames = cfg.max_mem_frames - 1

        # dimensions will be inferred from input later
        self.CK = self.CV = None
        self.H = self.W = None

        # The sensory memory is stored as a dictionary indexed by object ids
        # each of shape bs * C^h * H * W
        self.sensory = {}

        # a dictionary indexed by object ids, each of shape bs * T * Q * C
        self.obj_v = {}

        self.work_mem = KeyValueMemoryStore(save_selection=self.use_long_term,
                                            save_usage=self.use_long_term)
        if self.use_long_term:
            self.long_mem = KeyValueMemoryStore(save_usage=self.count_long_term_usage)

        self.config_stale = True
        self.engaged = False

    def update_config(self, cfg: DictConfig) -> None:
        self.config_stale = True
        self.top_k = cfg['top_k']

        assert self.use_long_term == cfg.use_long_term, 'cannot update this'
        assert self.count_long_term_usage == cfg.long_term.count_usage, 'cannot update this'

        self.use_long_term = cfg.use_long_term
        self.count_long_term_usage = cfg.long_term.count_usage
        if self.use_long_term:
            self.max_mem_frames = cfg.long_term.max_mem_frames - 1
            self.min_mem_frames = cfg.long_term.min_mem_frames - 1
            self.num_prototypes = cfg.long_term.num_prototypes
            self.max_long_tokens = cfg.long_term.max_num_tokens
            self.buffer_tokens = cfg.long_term.buffer_tokens
        else:
            self.max_mem_frames = cfg.max_mem_frames - 1

    def _readout(self, affinity, v) -> torch.Tensor:
        # affinity: bs*N*HW
        # v: bs*C*N or bs*num_objects*C*N
        # returns bs*C*HW or bs*num_objects*C*HW
        if len(v.shape) == 3:
            # single object
            return v @ affinity
        else:
            bs, num_objects, C, N = v.shape
            v = v.view(bs, num_objects * C, N)
            out = v @ affinity
            return out.view(bs, num_objects, C, -1)

    def _get_mask_by_ids(self, mask: torch.Tensor, obj_ids: List[int]) -> torch.Tensor:
        # -1 because the mask does not contain the background channel
        return mask[:, [self.object_manager.find_tmp_by_id(obj) - 1 for obj in obj_ids]]

    def _get_sensory_by_ids(self, obj_ids: List[int]) -> torch.Tensor:
        return torch.stack([self.sensory[obj] for obj in obj_ids], dim=1)

    def _get_object_mem_by_ids(self, obj_ids: List[int]) -> torch.Tensor:
        return torch.stack([self.obj_v[obj] for obj in obj_ids], dim=1)

    def _get_visual_values_by_ids(self, obj_ids: List[int]) -> torch.Tensor:
        # All the values that the object ids refer to should have the same shape
        value = torch.stack([self.work_mem.value[obj] for obj in obj_ids], dim=1)
        if self.use_long_term and obj_ids[0] in self.long_mem.value:
            lt_value = torch.stack([self.long_mem.value[obj] for obj in obj_ids], dim=1)
            value = torch.cat([lt_value, value], dim=-1)

        return value

    def read(self, pix_feat: torch.Tensor, query_key: torch.Tensor, selection: torch.Tensor,
             last_mask: torch.Tensor, network: CUTIE) -> Dict[int, torch.Tensor]:
        """
        Read from all memory stores and returns a single memory readout tensor for each object

        pix_feat: (1/2) x C x H x W
        query_key: (1/2) x C^k x H x W
        selection:  (1/2) x C^k x H x W
        last_mask: (1/2) x num_objects x H x W (at stride 16)
        return a dict of memory readouts, indexed by object indices. Each readout is C*H*W
        """
        h, w = pix_feat.shape[-2:]
        bs = pix_feat.shape[0]
        assert query_key.shape[0] == bs
        assert selection.shape[0] == bs
        assert last_mask.shape[0] == bs

        query_key = query_key.flatten(start_dim=2)  # bs*C^k*HW
        selection = selection.flatten(start_dim=2)  # bs*C^k*HW
        """
        Compute affinity and perform readout
        """
        all_readout_mem = {}
        buckets = self.work_mem.buckets
        for bucket_id, bucket in buckets.items():
            if self.use_long_term and self.long_mem.engaged(bucket_id):
                # Use long-term memory
                long_mem_size = self.long_mem.size(bucket_id)
                memory_key = torch.cat([self.long_mem.key[bucket_id], self.work_mem.key[bucket_id]],
                                       -1)
                shrinkage = torch.cat(
                    [self.long_mem.shrinkage[bucket_id], self.work_mem.shrinkage[bucket_id]], -1)

                similarity = get_similarity(memory_key, shrinkage, query_key, selection)
                affinity, usage = do_softmax(similarity,
                                             top_k=self.top_k,
                                             inplace=True,
                                             return_usage=True)
                """
                Record memory usage for working and long-term memory
                """
                # ignore the index return for long-term memory
                work_usage = usage[:, long_mem_size:]
                self.work_mem.update_bucket_usage(bucket_id, work_usage)

                if self.count_long_term_usage:
                    # ignore the index return for working memory
                    long_usage = usage[:, :long_mem_size]
                    self.long_mem.update_bucket_usage(bucket_id, long_usage)
            else:
                # no long-term memory
                memory_key = self.work_mem.key[bucket_id]
                shrinkage = self.work_mem.shrinkage[bucket_id]
                similarity = get_similarity(memory_key, shrinkage, query_key, selection)

                if self.use_long_term:
                    affinity, usage = do_softmax(similarity,
                                                 top_k=self.top_k,
                                                 inplace=True,
                                                 return_usage=True)
                    self.work_mem.update_bucket_usage(bucket_id, usage)
                else:
                    affinity = do_softmax(similarity, top_k=self.top_k, inplace=True)

            if self.chunk_size < 1:
                object_chunks = [bucket]
            else:
                object_chunks = [
                    bucket[i:i + self.chunk_size] for i in range(0, len(bucket), self.chunk_size)
                ]

            for objects in object_chunks:
                this_sensory = self._get_sensory_by_ids(objects)
                this_last_mask = self._get_mask_by_ids(last_mask, objects)
                this_msk_value = self._get_visual_values_by_ids(objects)  # (1/2)*num_objects*C*N
                visual_readout = self._readout(affinity,
                                               this_msk_value).view(bs, len(objects), self.CV, h, w)
                pixel_readout = network.pixel_fusion(pix_feat, visual_readout, this_sensory,
                                                     this_last_mask)
                this_obj_mem = self._get_object_mem_by_ids(objects).unsqueeze(2)
                readout_memory, aux_features = network.readout_query(pixel_readout, this_obj_mem)
                for i, obj in enumerate(objects):
                    all_readout_mem[obj] = readout_memory[:, i]

                if self.save_aux:
                    aux_output = {
                        'sensory': this_sensory,
                        'pixel_readout': pixel_readout,
                        'q_logits': aux_features['logits'] if aux_features else None,
                        'q_weights': aux_features['q_weights'] if aux_features else None,
                        'p_weights': aux_features['p_weights'] if aux_features else None,
                        'attn_mask': aux_features['attn_mask'].float() if aux_features else None,
                    }
                    self.aux = aux_output

        return all_readout_mem

    def add_memory(self,
                   key: torch.Tensor,
                   shrinkage: torch.Tensor,
                   msk_value: torch.Tensor,
                   obj_value: torch.Tensor,
                   objects: List[int],
                   selection: torch.Tensor = None,
                   *,
                   as_permanent: bool = False) -> None:
        # key: (1/2)*C*H*W
        # msk_value: (1/2)*num_objects*C*H*W
        # obj_value: (1/2)*num_objects*Q*C
        # objects contains a list of object ids corresponding to the objects in msk_value/obj_value
        bs = key.shape[0]
        assert shrinkage.shape[0] == bs
        assert msk_value.shape[0] == bs
        assert obj_value.shape[0] == bs

        self.engaged = True
        if self.H is None or self.config_stale:
            self.config_stale = False
            self.H, self.W = msk_value.shape[-2:]
            self.HW = self.H * self.W
            # convert from num. frames to num. tokens
            self.max_work_tokens = self.max_mem_frames * self.HW
            if self.use_long_term:
                self.min_work_tokens = self.min_mem_frames * self.HW

        # key:   bs*C*N
        # value: bs*num_objects*C*N
        key = key.flatten(start_dim=2)
        shrinkage = shrinkage.flatten(start_dim=2)
        self.CK = key.shape[1]

        msk_value = msk_value.flatten(start_dim=3)
        self.CV = msk_value.shape[2]

        if selection is not None:
            # not used in non-long-term mode
            selection = selection.flatten(start_dim=2)

        # insert object values into object memory
        for obj_id, obj in enumerate(objects):
            if obj in self.obj_v:
                """streaming average
                each self.obj_v[obj] is (1/2)*num_summaries*(embed_dim+1)
                first embed_dim keeps track of the sum of embeddings
                the last dim keeps the total count
                averaging in done inside the object transformer

                incoming obj_value is (1/2)*num_objects*num_summaries*(embed_dim+1)
                self.obj_v[obj] = torch.cat([self.obj_v[obj], obj_value[:, obj_id]], dim=0)
                """
                last_acc = self.obj_v[obj][:, :, -1]
                new_acc = last_acc + obj_value[:, obj_id, :, -1]

                self.obj_v[obj][:, :, :-1] = (self.obj_v[obj][:, :, :-1] +
                                              obj_value[:, obj_id, :, :-1])
                self.obj_v[obj][:, :, -1] = new_acc
            else:
                self.obj_v[obj] = obj_value[:, obj_id]

        # convert mask value tensor into a dict for insertion
        msk_values = {obj: msk_value[:, obj_id] for obj_id, obj in enumerate(objects)}
        self.work_mem.add(key,
                          msk_values,
                          shrinkage,
                          selection=selection,
                          as_permanent=as_permanent)

        for bucket_id in self.work_mem.buckets.keys():
            # long-term memory cleanup
            if self.use_long_term:
                # Do memory compressed if needed
                if self.work_mem.non_perm_size(bucket_id) >= self.max_work_tokens:
                    # Remove obsolete features if needed
                    if self.long_mem.non_perm_size(bucket_id) >= (self.max_long_tokens -
                                                         self.num_prototypes):
                        self.long_mem.remove_obsolete_features(
                            bucket_id,
                            self.max_long_tokens - self.num_prototypes - self.buffer_tokens)

                    self.compress_features(bucket_id)
            else:
                # FIFO
                self.work_mem.remove_old_memory(bucket_id, self.max_work_tokens)

    def purge_except(self, obj_keep_idx: List[int]) -> None:
        # purge certain objects from the memory except the one listed
        self.work_mem.purge_except(obj_keep_idx)
        if self.use_long_term and self.long_mem.engaged():
            self.long_mem.purge_except(obj_keep_idx)
        self.sensory = {k: v for k, v in self.sensory.items() if k in obj_keep_idx}

        if not self.work_mem.engaged():
            # everything is removed!
            self.engaged = False

    def compress_features(self, bucket_id: int) -> None:
        HW = self.HW

        # perform memory consolidation
        prototype_key, prototype_value, prototype_shrinkage = self.consolidation(
            *self.work_mem.get_all_sliced(bucket_id, 0, -self.min_work_tokens))

        # remove consolidated working memory
        self.work_mem.sieve_by_range(bucket_id,
                                     0,
                                     -self.min_work_tokens,
                                     min_size=self.min_work_tokens)

        # add to long-term memory
        self.long_mem.add(prototype_key,
                          prototype_value,
                          prototype_shrinkage,
                          selection=None,
                          supposed_bucket_id=bucket_id)

    def consolidation(self, candidate_key: torch.Tensor, candidate_shrinkage: torch.Tensor,
                      candidate_selection: torch.Tensor, candidate_value: Dict[int, torch.Tensor],
                      usage: torch.Tensor) -> (torch.Tensor, Dict[int, torch.Tensor], torch.Tensor):
        # find the indices with max usage
        bs = candidate_key.shape[0]
        assert bs in [1, 2]

        prototype_key = []
        prototype_selection = []
        for bi in range(bs):
            _, max_usage_indices = torch.topk(usage[bi], k=self.num_prototypes, dim=-1, sorted=True)
            prototype_indices = max_usage_indices.flatten()
            prototype_key.append(candidate_key[bi, :, prototype_indices])
            prototype_selection.append(candidate_selection[bi, :, prototype_indices])
        prototype_key = torch.stack(prototype_key, dim=0)
        prototype_selection = torch.stack(prototype_selection, dim=0)
        """
        Potentiation step
        """
        similarity = get_similarity(candidate_key, candidate_shrinkage, prototype_key,
                                    prototype_selection)
        affinity = do_softmax(similarity)

        # readout the values
        prototype_value = {k: self._readout(affinity, v) for k, v in candidate_value.items()}

        # readout the shrinkage term
        prototype_shrinkage = self._readout(affinity, candidate_shrinkage)

        return prototype_key, prototype_value, prototype_shrinkage

    def initialize_sensory_if_needed(self, sample_key: torch.Tensor, ids: List[int]):
        for obj in ids:
            if obj not in self.sensory:
                # also initializes the sensory memory
                bs, _, h, w = sample_key.shape
                self.sensory[obj] = torch.zeros((bs, self.sensory_dim, h, w),
                                                device=sample_key.device)

    def update_sensory(self, sensory: torch.Tensor, ids: List[int]):
        # sensory: 1*num_objects*C*H*W
        for obj_id, obj in enumerate(ids):
            self.sensory[obj] = sensory[:, obj_id]

    def get_sensory(self, ids: List[int]):
        # returns (1/2)*num_objects*C*H*W
        return self._get_sensory_by_ids(ids)
    
    def clear_non_permanent_memory(self):
        self.work_mem.clear_non_permanent_memory()
        if self.use_long_term:
            self.long_mem.clear_non_permanent_memory()

    def clear_sensory_memory(self):
        self.sensory = {}