Spaces:
Running
on
A10G
Running
on
A10G
File size: 3,183 Bytes
320e465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import time
import torch
import cv2
from PIL import Image, ImageDraw, ImageOps
import numpy as np
from typing import Union
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator
import matplotlib.pyplot as plt
import PIL
from .mask_painter import mask_painter as mask_painter2
from .base_segmenter import BaseSegmenter
from .painter import mask_painter, point_painter
import os
import requests
import sys
mask_color = 3
mask_alpha = 0.7
contour_color = 1
contour_width = 5
point_color_ne = 8
point_color_ps = 50
point_alpha = 0.9
point_radius = 15
contour_color = 2
contour_width = 5
class SamControler():
def __init__(self, SAM_checkpoint, model_type, device):
'''
initialize sam controler
'''
self.sam_controler = BaseSegmenter(SAM_checkpoint, model_type, device)
# def seg_again(self, image: np.ndarray):
# '''
# it is used when interact in video
# '''
# self.sam_controler.reset_image()
# self.sam_controler.set_image(image)
# return
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True,mask_color=3):
'''
it is used in first frame in video
return: mask, logit, painted image(mask+point)
'''
# self.sam_controler.set_image(image)
origal_image = self.sam_controler.orignal_image
neg_flag = labels[-1]
if neg_flag==1:
#find neg
prompts = {
'point_coords': points,
'point_labels': labels,
}
masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask)
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
prompts = {
'point_coords': points,
'point_labels': labels,
'mask_input': logit[None, :, :]
}
masks, scores, logits = self.sam_controler.predict(prompts, 'both', multimask)
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
else:
#find positive
prompts = {
'point_coords': points,
'point_labels': labels,
}
masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask)
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
assert len(points)==len(labels)
painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
painted_image = Image.fromarray(painted_image)
return mask, logit, painted_image
|