Spaces:
Running
on
A10G
Running
on
A10G
File size: 11,554 Bytes
320e465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
from typing import List, Dict
import logging
from omegaconf import DictConfig
import torch
import torch.nn as nn
from tracker.model.modules import *
from tracker.model.big_modules import *
from tracker.model.aux_modules import AuxComputer
from tracker.model.utils.memory_utils import *
from tracker.model.transformer.object_transformer import QueryTransformer
from tracker.model.transformer.object_summarizer import ObjectSummarizer
from tracker.utils.tensor_utils import aggregate
log = logging.getLogger()
class CUTIE(nn.Module):
def __init__(self, cfg: DictConfig, *, single_object=False):
super().__init__()
model_cfg = cfg.model
self.ms_dims = model_cfg.pixel_encoder.ms_dims
self.key_dim = model_cfg.key_dim
self.value_dim = model_cfg.value_dim
self.sensory_dim = model_cfg.sensory_dim
self.pixel_dim = model_cfg.pixel_dim
self.embed_dim = model_cfg.embed_dim
self.single_object = single_object
log.info(f'Single object: {self.single_object}')
self.pixel_encoder = PixelEncoder(model_cfg)
self.pix_feat_proj = nn.Conv2d(self.ms_dims[0], self.pixel_dim, kernel_size=1)
self.key_proj = KeyProjection(model_cfg)
self.mask_encoder = MaskEncoder(model_cfg, single_object=single_object)
self.mask_decoder = MaskDecoder(model_cfg)
self.pixel_fuser = PixelFeatureFuser(model_cfg, single_object=single_object)
self.object_transformer = QueryTransformer(model_cfg)
self.object_summarizer = ObjectSummarizer(model_cfg)
self.aux_computer = AuxComputer(cfg)
self.register_buffer("pixel_mean", torch.Tensor(model_cfg.pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(model_cfg.pixel_std).view(-1, 1, 1), False)
def _get_others(self, masks: torch.Tensor) -> torch.Tensor:
# for each object, return the sum of masks of all other objects
if self.single_object:
return None
num_objects = masks.shape[1]
if num_objects >= 1:
others = (masks.sum(dim=1, keepdim=True) - masks).clamp(0, 1)
else:
others = torch.zeros_like(masks)
return others
def encode_image(self, image: torch.Tensor) -> (Iterable[torch.Tensor], torch.Tensor):
image = (image - self.pixel_mean) / self.pixel_std
ms_image_feat = self.pixel_encoder(image)
return ms_image_feat, self.pix_feat_proj(ms_image_feat[0])
def encode_mask(
self,
image: torch.Tensor,
ms_features: List[torch.Tensor],
sensory: torch.Tensor,
masks: torch.Tensor,
*,
deep_update: bool = True,
chunk_size: int = -1,
need_weights: bool = False) -> (torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor):
image = (image - self.pixel_mean) / self.pixel_std
others = self._get_others(masks)
mask_value, new_sensory = self.mask_encoder(image,
ms_features,
sensory,
masks,
others,
deep_update=deep_update,
chunk_size=chunk_size)
object_summaries, object_logits = self.object_summarizer(masks, mask_value, need_weights)
return mask_value, new_sensory, object_summaries, object_logits
def transform_key(self,
final_pix_feat: torch.Tensor,
*,
need_sk: bool = True,
need_ek: bool = True) -> (torch.Tensor, torch.Tensor, torch.Tensor):
key, shrinkage, selection = self.key_proj(final_pix_feat, need_s=need_sk, need_e=need_ek)
return key, shrinkage, selection
# Used in training only.
# This step is replaced by MemoryManager in test time
def read_memory(self, query_key: torch.Tensor, query_selection: torch.Tensor,
memory_key: torch.Tensor, memory_shrinkage: torch.Tensor,
msk_value: torch.Tensor, obj_memory: torch.Tensor, pix_feat: torch.Tensor,
sensory: torch.Tensor, last_mask: torch.Tensor,
selector: torch.Tensor) -> (torch.Tensor, Dict[str, torch.Tensor]):
"""
query_key : B * CK * H * W
query_selection : B * CK * H * W
memory_key : B * CK * T * H * W
memory_shrinkage: B * 1 * T * H * W
msk_value : B * num_objects * CV * T * H * W
obj_memory : B * num_objects * T * num_summaries * C
pixel_feature : B * C * H * W
"""
batch_size, num_objects = msk_value.shape[:2]
# read using visual attention
with torch.cuda.amp.autocast(enabled=False):
affinity = get_affinity(memory_key.float(), memory_shrinkage.float(), query_key.float(),
query_selection.float())
msk_value = msk_value.flatten(start_dim=1, end_dim=2).float()
# B * (num_objects*CV) * H * W
pixel_readout = readout(affinity, msk_value)
pixel_readout = pixel_readout.view(batch_size, num_objects, self.value_dim,
*pixel_readout.shape[-2:])
pixel_readout = self.pixel_fusion(pix_feat, pixel_readout, sensory, last_mask)
# read from query transformer
mem_readout, aux_features = self.readout_query(pixel_readout, obj_memory, selector=selector)
aux_output = {
'sensory': sensory,
'q_logits': aux_features['logits'] if aux_features else None,
'attn_mask': aux_features['attn_mask'] if aux_features else None,
}
return mem_readout, aux_output
def pixel_fusion(self,
pix_feat: torch.Tensor,
pixel: torch.Tensor,
sensory: torch.Tensor,
last_mask: torch.Tensor,
*,
chunk_size: int = -1) -> torch.Tensor:
last_mask = F.interpolate(last_mask, size=sensory.shape[-2:], mode='area')
last_others = self._get_others(last_mask)
fused = self.pixel_fuser(pix_feat,
pixel,
sensory,
last_mask,
last_others,
chunk_size=chunk_size)
return fused
def readout_query(self,
pixel_readout,
obj_memory,
*,
selector=None,
need_weights=False) -> (torch.Tensor, Dict[str, torch.Tensor]):
return self.object_transformer(pixel_readout,
obj_memory,
selector=selector,
need_weights=need_weights)
def segment(self,
ms_image_feat: List[torch.Tensor],
memory_readout: torch.Tensor,
sensory: torch.Tensor,
*,
selector: bool = None,
chunk_size: int = -1,
update_sensory: bool = True) -> (torch.Tensor, torch.Tensor, torch.Tensor):
"""
multi_scale_features is from the key encoder for skip-connection
memory_readout is from working/long-term memory
sensory is the sensory memory
last_mask is the mask from the last frame, supplementing sensory memory
selector is 1 if an object exists, and 0 otherwise. We use it to filter padded objects
during training.
"""
sensory, logits = self.mask_decoder(ms_image_feat,
memory_readout,
sensory,
chunk_size=chunk_size,
update_sensory=update_sensory)
prob = torch.sigmoid(logits)
if selector is not None:
prob = prob * selector
# Softmax over all objects[]
logits = aggregate(prob, dim=1)
logits = F.interpolate(logits, scale_factor=4, mode='bilinear', align_corners=False)
prob = F.softmax(logits, dim=1)
return sensory, logits, prob
def compute_aux(self, pix_feat: torch.Tensor, aux_inputs: Dict[str, torch.Tensor],
selector: torch.Tensor) -> Dict[str, torch.Tensor]:
return self.aux_computer(pix_feat, aux_inputs, selector)
def forward(self, *args, **kwargs):
raise NotImplementedError
def load_weights(self, src_dict, init_as_zero_if_needed=False) -> None:
if not self.single_object:
# Map single-object weight to multi-object weight (4->5 out channels in conv1)
for k in list(src_dict.keys()):
if k == 'mask_encoder.conv1.weight':
if src_dict[k].shape[1] == 4:
log.info(f'Converting {k} from single object to multiple objects.')
pads = torch.zeros((64, 1, 7, 7), device=src_dict[k].device)
if not init_as_zero_if_needed:
nn.init.orthogonal_(pads)
log.info(f'Randomly initialized padding for {k}.')
else:
log.info(f'Zero-initialized padding for {k}.')
src_dict[k] = torch.cat([src_dict[k], pads], 1)
elif k == 'pixel_fuser.sensory_compress.weight':
if src_dict[k].shape[1] == self.sensory_dim + 1:
log.info(f'Converting {k} from single object to multiple objects.')
pads = torch.zeros((self.value_dim, 1, 1, 1), device=src_dict[k].device)
if not init_as_zero_if_needed:
nn.init.orthogonal_(pads)
log.info(f'Randomly initialized padding for {k}.')
else:
log.info(f'Zero-initialized padding for {k}.')
src_dict[k] = torch.cat([src_dict[k], pads], 1)
elif self.single_object:
"""
If the model is multiple-object and we are training in single-object,
we strip the last channel of conv1.
This is not supposed to happen in standard training except when users are trying to
finetune a trained model with single object datasets.
"""
if src_dict['mask_encoder.conv1.weight'].shape[1] == 5:
log.warning(f'Converting {k} from multiple objects to single object.'
'This is not supposed to happen in standard training.')
src_dict[k] = src_dict[k][:, :-1]
for k in src_dict:
if k not in self.state_dict():
log.info(f'Key {k} found in src_dict but not in self.state_dict()!!!')
for k in self.state_dict():
if k not in src_dict:
log.info(f'Key {k} found in self.state_dict() but not in src_dict!!!')
self.load_state_dict(src_dict, strict=False)
@property
def device(self) -> torch.device:
return self.pixel_mean.device |