Spaces:
Running
on
A10G
Running
on
A10G
from typing import List, Iterable | |
import torch | |
import torch.nn.functional as F | |
# STM | |
def pad_divide_by(in_img: torch.Tensor, d: int) -> (torch.Tensor, Iterable[int]): | |
h, w = in_img.shape[-2:] | |
if h % d > 0: | |
new_h = h + d - h % d | |
else: | |
new_h = h | |
if w % d > 0: | |
new_w = w + d - w % d | |
else: | |
new_w = w | |
lh, uh = int((new_h - h) / 2), int(new_h - h) - int((new_h - h) / 2) | |
lw, uw = int((new_w - w) / 2), int(new_w - w) - int((new_w - w) / 2) | |
pad_array = (int(lw), int(uw), int(lh), int(uh)) | |
out = F.pad(in_img, pad_array) | |
return out, pad_array | |
def unpad(img: torch.Tensor, pad: Iterable[int]) -> torch.Tensor: | |
if len(img.shape) == 4: | |
if pad[2] + pad[3] > 0: | |
img = img[:, :, pad[2]:-pad[3], :] | |
if pad[0] + pad[1] > 0: | |
img = img[:, :, :, pad[0]:-pad[1]] | |
elif len(img.shape) == 3: | |
if pad[2] + pad[3] > 0: | |
img = img[:, pad[2]:-pad[3], :] | |
if pad[0] + pad[1] > 0: | |
img = img[:, :, pad[0]:-pad[1]] | |
elif len(img.shape) == 5: | |
if pad[2] + pad[3] > 0: | |
img = img[:, :, :, pad[2]:-pad[3], :] | |
if pad[0] + pad[1] > 0: | |
img = img[:, :, :, :, pad[0]:-pad[1]] | |
else: | |
raise NotImplementedError | |
return img | |
# @torch.jit.script | |
def aggregate(prob: torch.Tensor, dim: int) -> torch.Tensor: | |
with torch.cuda.amp.autocast(enabled=False): | |
prob = prob.float() | |
new_prob = torch.cat([torch.prod(1 - prob, dim=dim, keepdim=True), prob], | |
dim).clamp(1e-7, 1 - 1e-7) | |
logits = torch.log((new_prob / (1 - new_prob))) | |
return logits | |
# @torch.jit.script | |
def cls_to_one_hot(cls_gt: torch.Tensor, num_objects: int) -> torch.Tensor: | |
# cls_gt: B*1*H*W | |
B, _, H, W = cls_gt.shape | |
one_hot = torch.zeros(B, num_objects + 1, H, W, device=cls_gt.device).scatter_(1, cls_gt, 1) | |
return one_hot |