ProPainter / model /modules /base_module.py
sczhou's picture
init code
320e465
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import reduce
class BaseNetwork(nn.Module):
def __init__(self):
super(BaseNetwork, self).__init__()
def print_network(self):
if isinstance(self, list):
self = self[0]
num_params = 0
for param in self.parameters():
num_params += param.numel()
print(
'Network [%s] was created. Total number of parameters: %.1f million. '
'To see the architecture, do print(network).' %
(type(self).__name__, num_params / 1000000))
def init_weights(self, init_type='normal', gain=0.02):
'''
initialize network's weights
init_type: normal | xavier | kaiming | orthogonal
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/9451e70673400885567d08a9e97ade2524c700d0/models/networks.py#L39
'''
def init_func(m):
classname = m.__class__.__name__
if classname.find('InstanceNorm2d') != -1:
if hasattr(m, 'weight') and m.weight is not None:
nn.init.constant_(m.weight.data, 1.0)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias.data, 0.0)
elif hasattr(m, 'weight') and (classname.find('Conv') != -1
or classname.find('Linear') != -1):
if init_type == 'normal':
nn.init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
nn.init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'xavier_uniform':
nn.init.xavier_uniform_(m.weight.data, gain=1.0)
elif init_type == 'kaiming':
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
nn.init.orthogonal_(m.weight.data, gain=gain)
elif init_type == 'none': # uses pytorch's default init method
m.reset_parameters()
else:
raise NotImplementedError(
'initialization method [%s] is not implemented' %
init_type)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias.data, 0.0)
self.apply(init_func)
# propagate to children
for m in self.children():
if hasattr(m, 'init_weights'):
m.init_weights(init_type, gain)
class Vec2Feat(nn.Module):
def __init__(self, channel, hidden, kernel_size, stride, padding):
super(Vec2Feat, self).__init__()
self.relu = nn.LeakyReLU(0.2, inplace=True)
c_out = reduce((lambda x, y: x * y), kernel_size) * channel
self.embedding = nn.Linear(hidden, c_out)
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.bias_conv = nn.Conv2d(channel,
channel,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x, t, output_size):
b_, _, _, _, c_ = x.shape
x = x.view(b_, -1, c_)
feat = self.embedding(x)
b, _, c = feat.size()
feat = feat.view(b * t, -1, c).permute(0, 2, 1)
feat = F.fold(feat,
output_size=output_size,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding)
feat = self.bias_conv(feat)
return feat
class FusionFeedForward(nn.Module):
def __init__(self, dim, hidden_dim=1960, t2t_params=None):
super(FusionFeedForward, self).__init__()
# We set hidden_dim as a default to 1960
self.fc1 = nn.Sequential(nn.Linear(dim, hidden_dim))
self.fc2 = nn.Sequential(nn.GELU(), nn.Linear(hidden_dim, dim))
assert t2t_params is not None
self.t2t_params = t2t_params
self.kernel_shape = reduce((lambda x, y: x * y), t2t_params['kernel_size']) # 49
def forward(self, x, output_size):
n_vecs = 1
for i, d in enumerate(self.t2t_params['kernel_size']):
n_vecs *= int((output_size[i] + 2 * self.t2t_params['padding'][i] -
(d - 1) - 1) / self.t2t_params['stride'][i] + 1)
x = self.fc1(x)
b, n, c = x.size()
normalizer = x.new_ones(b, n, self.kernel_shape).view(-1, n_vecs, self.kernel_shape).permute(0, 2, 1)
normalizer = F.fold(normalizer,
output_size=output_size,
kernel_size=self.t2t_params['kernel_size'],
padding=self.t2t_params['padding'],
stride=self.t2t_params['stride'])
x = F.fold(x.view(-1, n_vecs, c).permute(0, 2, 1),
output_size=output_size,
kernel_size=self.t2t_params['kernel_size'],
padding=self.t2t_params['padding'],
stride=self.t2t_params['stride'])
x = F.unfold(x / normalizer,
kernel_size=self.t2t_params['kernel_size'],
padding=self.t2t_params['padding'],
stride=self.t2t_params['stride']).permute(
0, 2, 1).contiguous().view(b, n, c)
x = self.fc2(x)
return x