Spaces:
Running
on
A10G
Running
on
A10G
import argparse | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from RAFT import RAFT | |
from model.modules.flow_loss_utils import flow_warp, ternary_loss2 | |
def initialize_RAFT(model_path='weights/raft-things.pth', device='cuda'): | |
"""Initializes the RAFT model. | |
""" | |
args = argparse.ArgumentParser() | |
args.raft_model = model_path | |
args.small = False | |
args.mixed_precision = False | |
args.alternate_corr = False | |
model = torch.nn.DataParallel(RAFT(args)) | |
model.load_state_dict(torch.load(args.raft_model, map_location='cpu')) | |
model = model.module | |
model.to(device) | |
return model | |
class RAFT_bi(nn.Module): | |
"""Flow completion loss""" | |
def __init__(self, model_path='weights/raft-things.pth', device='cuda'): | |
super().__init__() | |
self.fix_raft = initialize_RAFT(model_path, device=device) | |
for p in self.fix_raft.parameters(): | |
p.requires_grad = False | |
self.l1_criterion = nn.L1Loss() | |
self.eval() | |
def forward(self, gt_local_frames, iters=20): | |
b, l_t, c, h, w = gt_local_frames.size() | |
# print(gt_local_frames.shape) | |
with torch.no_grad(): | |
gtlf_1 = gt_local_frames[:, :-1, :, :, :].reshape(-1, c, h, w) | |
gtlf_2 = gt_local_frames[:, 1:, :, :, :].reshape(-1, c, h, w) | |
# print(gtlf_1.shape) | |
_, gt_flows_forward = self.fix_raft(gtlf_1, gtlf_2, iters=iters, test_mode=True) | |
_, gt_flows_backward = self.fix_raft(gtlf_2, gtlf_1, iters=iters, test_mode=True) | |
gt_flows_forward = gt_flows_forward.view(b, l_t-1, 2, h, w) | |
gt_flows_backward = gt_flows_backward.view(b, l_t-1, 2, h, w) | |
return gt_flows_forward, gt_flows_backward | |
################################################################################## | |
def smoothness_loss(flow, cmask): | |
delta_u, delta_v, mask = smoothness_deltas(flow) | |
loss_u = charbonnier_loss(delta_u, cmask) | |
loss_v = charbonnier_loss(delta_v, cmask) | |
return loss_u + loss_v | |
def smoothness_deltas(flow): | |
""" | |
flow: [b, c, h, w] | |
""" | |
mask_x = create_mask(flow, [[0, 0], [0, 1]]) | |
mask_y = create_mask(flow, [[0, 1], [0, 0]]) | |
mask = torch.cat((mask_x, mask_y), dim=1) | |
mask = mask.to(flow.device) | |
filter_x = torch.tensor([[0, 0, 0.], [0, 1, -1], [0, 0, 0]]) | |
filter_y = torch.tensor([[0, 0, 0.], [0, 1, 0], [0, -1, 0]]) | |
weights = torch.ones([2, 1, 3, 3]) | |
weights[0, 0] = filter_x | |
weights[1, 0] = filter_y | |
weights = weights.to(flow.device) | |
flow_u, flow_v = torch.split(flow, split_size_or_sections=1, dim=1) | |
delta_u = F.conv2d(flow_u, weights, stride=1, padding=1) | |
delta_v = F.conv2d(flow_v, weights, stride=1, padding=1) | |
return delta_u, delta_v, mask | |
def second_order_loss(flow, cmask): | |
delta_u, delta_v, mask = second_order_deltas(flow) | |
loss_u = charbonnier_loss(delta_u, cmask) | |
loss_v = charbonnier_loss(delta_v, cmask) | |
return loss_u + loss_v | |
def charbonnier_loss(x, mask=None, truncate=None, alpha=0.45, beta=1.0, epsilon=0.001): | |
""" | |
Compute the generalized charbonnier loss of the difference tensor x | |
All positions where mask == 0 are not taken into account | |
x: a tensor of shape [b, c, h, w] | |
mask: a mask of shape [b, mc, h, w], where mask channels must be either 1 or the same as | |
the number of channels of x. Entries should be 0 or 1 | |
return: loss | |
""" | |
b, c, h, w = x.shape | |
norm = b * c * h * w | |
error = torch.pow(torch.square(x * beta) + torch.square(torch.tensor(epsilon)), alpha) | |
if mask is not None: | |
error = mask * error | |
if truncate is not None: | |
error = torch.min(error, truncate) | |
return torch.sum(error) / norm | |
def second_order_deltas(flow): | |
""" | |
consider the single flow first | |
flow shape: [b, c, h, w] | |
""" | |
# create mask | |
mask_x = create_mask(flow, [[0, 0], [1, 1]]) | |
mask_y = create_mask(flow, [[1, 1], [0, 0]]) | |
mask_diag = create_mask(flow, [[1, 1], [1, 1]]) | |
mask = torch.cat((mask_x, mask_y, mask_diag, mask_diag), dim=1) | |
mask = mask.to(flow.device) | |
filter_x = torch.tensor([[0, 0, 0.], [1, -2, 1], [0, 0, 0]]) | |
filter_y = torch.tensor([[0, 1, 0.], [0, -2, 0], [0, 1, 0]]) | |
filter_diag1 = torch.tensor([[1, 0, 0.], [0, -2, 0], [0, 0, 1]]) | |
filter_diag2 = torch.tensor([[0, 0, 1.], [0, -2, 0], [1, 0, 0]]) | |
weights = torch.ones([4, 1, 3, 3]) | |
weights[0] = filter_x | |
weights[1] = filter_y | |
weights[2] = filter_diag1 | |
weights[3] = filter_diag2 | |
weights = weights.to(flow.device) | |
# split the flow into flow_u and flow_v, conv them with the weights | |
flow_u, flow_v = torch.split(flow, split_size_or_sections=1, dim=1) | |
delta_u = F.conv2d(flow_u, weights, stride=1, padding=1) | |
delta_v = F.conv2d(flow_v, weights, stride=1, padding=1) | |
return delta_u, delta_v, mask | |
def create_mask(tensor, paddings): | |
""" | |
tensor shape: [b, c, h, w] | |
paddings: [2 x 2] shape list, the first row indicates up and down paddings | |
the second row indicates left and right paddings | |
| | | |
| x | | |
| x * x | | |
| x | | |
| | | |
""" | |
shape = tensor.shape | |
inner_height = shape[2] - (paddings[0][0] + paddings[0][1]) | |
inner_width = shape[3] - (paddings[1][0] + paddings[1][1]) | |
inner = torch.ones([inner_height, inner_width]) | |
torch_paddings = [paddings[1][0], paddings[1][1], paddings[0][0], paddings[0][1]] # left, right, up and down | |
mask2d = F.pad(inner, pad=torch_paddings) | |
mask3d = mask2d.unsqueeze(0).repeat(shape[0], 1, 1) | |
mask4d = mask3d.unsqueeze(1) | |
return mask4d.detach() | |
def ternary_loss(flow_comp, flow_gt, mask, current_frame, shift_frame, scale_factor=1): | |
if scale_factor != 1: | |
current_frame = F.interpolate(current_frame, scale_factor=1 / scale_factor, mode='bilinear') | |
shift_frame = F.interpolate(shift_frame, scale_factor=1 / scale_factor, mode='bilinear') | |
warped_sc = flow_warp(shift_frame, flow_gt.permute(0, 2, 3, 1)) | |
noc_mask = torch.exp(-50. * torch.sum(torch.abs(current_frame - warped_sc), dim=1).pow(2)).unsqueeze(1) | |
warped_comp_sc = flow_warp(shift_frame, flow_comp.permute(0, 2, 3, 1)) | |
loss = ternary_loss2(current_frame, warped_comp_sc, noc_mask, mask) | |
return loss | |
class FlowLoss(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.l1_criterion = nn.L1Loss() | |
def forward(self, pred_flows, gt_flows, masks, frames): | |
# pred_flows: b t-1 2 h w | |
loss = 0 | |
warp_loss = 0 | |
h, w = pred_flows[0].shape[-2:] | |
masks = [masks[:,:-1,...].contiguous(), masks[:, 1:, ...].contiguous()] | |
frames0 = frames[:,:-1,...] | |
frames1 = frames[:,1:,...] | |
current_frames = [frames0, frames1] | |
next_frames = [frames1, frames0] | |
for i in range(len(pred_flows)): | |
# print(pred_flows[i].shape) | |
combined_flow = pred_flows[i] * masks[i] + gt_flows[i] * (1-masks[i]) | |
l1_loss = self.l1_criterion(pred_flows[i] * masks[i], gt_flows[i] * masks[i]) / torch.mean(masks[i]) | |
l1_loss += self.l1_criterion(pred_flows[i] * (1-masks[i]), gt_flows[i] * (1-masks[i])) / torch.mean((1-masks[i])) | |
smooth_loss = smoothness_loss(combined_flow.reshape(-1,2,h,w), masks[i].reshape(-1,1,h,w)) | |
smooth_loss2 = second_order_loss(combined_flow.reshape(-1,2,h,w), masks[i].reshape(-1,1,h,w)) | |
warp_loss_i = ternary_loss(combined_flow.reshape(-1,2,h,w), gt_flows[i].reshape(-1,2,h,w), | |
masks[i].reshape(-1,1,h,w), current_frames[i].reshape(-1,3,h,w), next_frames[i].reshape(-1,3,h,w)) | |
loss += l1_loss + smooth_loss + smooth_loss2 | |
warp_loss += warp_loss_i | |
return loss, warp_loss | |
def edgeLoss(preds_edges, edges): | |
""" | |
Args: | |
preds_edges: with shape [b, c, h , w] | |
edges: with shape [b, c, h, w] | |
Returns: Edge losses | |
""" | |
mask = (edges > 0.5).float() | |
b, c, h, w = mask.shape | |
num_pos = torch.sum(mask, dim=[1, 2, 3]).float() # Shape: [b,]. | |
num_neg = c * h * w - num_pos # Shape: [b,]. | |
neg_weights = (num_neg / (num_pos + num_neg)).unsqueeze(1).unsqueeze(2).unsqueeze(3) | |
pos_weights = (num_pos / (num_pos + num_neg)).unsqueeze(1).unsqueeze(2).unsqueeze(3) | |
weight = neg_weights * mask + pos_weights * (1 - mask) # weight for debug | |
losses = F.binary_cross_entropy_with_logits(preds_edges.float(), edges.float(), weight=weight, reduction='none') | |
loss = torch.mean(losses) | |
return loss | |
class EdgeLoss(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, pred_edges, gt_edges, masks): | |
# pred_flows: b t-1 1 h w | |
loss = 0 | |
h, w = pred_edges[0].shape[-2:] | |
masks = [masks[:,:-1,...].contiguous(), masks[:, 1:, ...].contiguous()] | |
for i in range(len(pred_edges)): | |
# print(f'edges_{i}', torch.sum(gt_edges[i])) # debug | |
combined_edge = pred_edges[i] * masks[i] + gt_edges[i] * (1-masks[i]) | |
edge_loss = (edgeLoss(pred_edges[i].reshape(-1,1,h,w), gt_edges[i].reshape(-1,1,h,w)) \ | |
+ 5 * edgeLoss(combined_edge.reshape(-1,1,h,w), gt_edges[i].reshape(-1,1,h,w))) | |
loss += edge_loss | |
return loss | |
class FlowSimpleLoss(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.l1_criterion = nn.L1Loss() | |
def forward(self, pred_flows, gt_flows): | |
# pred_flows: b t-1 2 h w | |
loss = 0 | |
h, w = pred_flows[0].shape[-2:] | |
h_orig, w_orig = gt_flows[0].shape[-2:] | |
pred_flows = [f.view(-1, 2, h, w) for f in pred_flows] | |
gt_flows = [f.view(-1, 2, h_orig, w_orig) for f in gt_flows] | |
ds_factor = 1.0*h/h_orig | |
gt_flows = [F.interpolate(f, scale_factor=ds_factor, mode='area') * ds_factor for f in gt_flows] | |
for i in range(len(pred_flows)): | |
loss += self.l1_criterion(pred_flows[i], gt_flows[i]) | |
return loss |