Spaces:
Running
on
A10G
Running
on
A10G
""" | |
For computing auxiliary outputs for auxiliary losses | |
""" | |
from typing import Dict | |
from omegaconf import DictConfig | |
import torch | |
import torch.nn as nn | |
from tracker.model.group_modules import GConv2d | |
from tracker.utils.tensor_utils import aggregate | |
class LinearPredictor(nn.Module): | |
def __init__(self, x_dim: int, pix_dim: int): | |
super().__init__() | |
self.projection = GConv2d(x_dim, pix_dim + 1, kernel_size=1) | |
def forward(self, pix_feat: torch.Tensor, x: torch.Tensor) -> torch.Tensor: | |
# pixel_feat: B*pix_dim*H*W | |
# x: B*num_objects*x_dim*H*W | |
num_objects = x.shape[1] | |
x = self.projection(x) | |
pix_feat = pix_feat.unsqueeze(1).expand(-1, num_objects, -1, -1, -1) | |
logits = (pix_feat * x[:, :, :-1]).sum(dim=2) + x[:, :, -1] | |
return logits | |
class DirectPredictor(nn.Module): | |
def __init__(self, x_dim: int): | |
super().__init__() | |
self.projection = GConv2d(x_dim, 1, kernel_size=1) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# x: B*num_objects*x_dim*H*W | |
logits = self.projection(x).squeeze(2) | |
return logits | |
class AuxComputer(nn.Module): | |
def __init__(self, cfg: DictConfig): | |
super().__init__() | |
use_sensory_aux = cfg.model.aux_loss.sensory.enabled | |
self.use_query_aux = cfg.model.aux_loss.query.enabled | |
sensory_dim = cfg.model.sensory_dim | |
embed_dim = cfg.model.embed_dim | |
if use_sensory_aux: | |
self.sensory_aux = LinearPredictor(sensory_dim, embed_dim) | |
else: | |
self.sensory_aux = None | |
def _aggregate_with_selector(self, logits: torch.Tensor, selector: torch.Tensor) -> torch.Tensor: | |
prob = torch.sigmoid(logits) | |
if selector is not None: | |
prob = prob * selector | |
logits = aggregate(prob, dim=1) | |
return logits | |
def forward(self, pix_feat: torch.Tensor, aux_input: Dict[str, torch.Tensor], | |
selector: torch.Tensor) -> Dict[str, torch.Tensor]: | |
sensory = aux_input['sensory'] | |
q_logits = aux_input['q_logits'] | |
aux_output = {} | |
aux_output['attn_mask'] = aux_input['attn_mask'] | |
if self.sensory_aux is not None: | |
# B*num_objects*H*W | |
logits = self.sensory_aux(pix_feat, sensory) | |
aux_output['sensory_logits'] = self._aggregate_with_selector(logits, selector) | |
if self.use_query_aux: | |
# B*num_objects*num_levels*H*W | |
aux_output['q_logits'] = self._aggregate_with_selector( | |
torch.stack(q_logits, dim=2), | |
selector.unsqueeze(2) if selector is not None else None) | |
return aux_output |