Spaces:
Running
on
A10G
Running
on
A10G
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class CAResBlock(nn.Module): | |
def __init__(self, in_dim: int, out_dim: int, residual: bool = True): | |
super().__init__() | |
self.residual = residual | |
self.conv1 = nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1) | |
self.conv2 = nn.Conv2d(out_dim, out_dim, kernel_size=3, padding=1) | |
t = int((abs(math.log2(out_dim)) + 1) // 2) | |
k = t if t % 2 else t + 1 | |
self.pool = nn.AdaptiveAvgPool2d(1) | |
self.conv = nn.Conv1d(1, 1, kernel_size=k, padding=(k - 1) // 2, bias=False) | |
if self.residual: | |
if in_dim == out_dim: | |
self.downsample = nn.Identity() | |
else: | |
self.downsample = nn.Conv2d(in_dim, out_dim, kernel_size=1) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
r = x | |
x = self.conv1(F.relu(x)) | |
x = self.conv2(F.relu(x)) | |
b, c = x.shape[:2] | |
w = self.pool(x).view(b, 1, c) | |
w = self.conv(w).transpose(-1, -2).unsqueeze(-1).sigmoid() # B*C*1*1 | |
if self.residual: | |
x = x * w + self.downsample(r) | |
else: | |
x = x * w | |
return x | |