sczhou's picture
init code
320e465
# Reference:
# https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/transformer_decoder/position_encoding.py
# https://github.com/tatp22/multidim-positional-encoding/blob/master/positional_encodings/torch_encodings.py
import math
import numpy as np
import torch
from torch import nn
def get_emb(sin_inp: torch.Tensor) -> torch.Tensor:
"""
Gets a base embedding for one dimension with sin and cos intertwined
"""
emb = torch.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
return torch.flatten(emb, -2, -1)
class PositionalEncoding(nn.Module):
def __init__(self,
dim: int,
scale: float = math.pi * 2,
temperature: float = 10000,
normalize: bool = True,
channel_last: bool = True,
transpose_output: bool = False):
super().__init__()
dim = int(np.ceil(dim / 4) * 2)
self.dim = dim
inv_freq = 1.0 / (temperature**(torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.normalize = normalize
self.scale = scale
self.eps = 1e-6
self.channel_last = channel_last
self.transpose_output = transpose_output
self.cached_penc = None # the cache is irrespective of the number of objects
def forward(self, tensor: torch.Tensor) -> torch.Tensor:
"""
:param tensor: A 4/5d tensor of size
channel_last=True: (batch_size, h, w, c) or (batch_size, k, h, w, c)
channel_last=False: (batch_size, c, h, w) or (batch_size, k, c, h, w)
:return: positional encoding tensor that has the same shape as the input if the input is 4d
if the input is 5d, the output is broadcastable along the k-dimension
"""
if len(tensor.shape) != 4 and len(tensor.shape) != 5:
raise RuntimeError(f'The input tensor has to be 4/5d, got {tensor.shape}!')
if len(tensor.shape) == 5:
# take a sample from the k dimension
num_objects = tensor.shape[1]
tensor = tensor[:, 0]
else:
num_objects = None
if self.channel_last:
batch_size, h, w, c = tensor.shape
else:
batch_size, c, h, w = tensor.shape
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
if num_objects is None:
return self.cached_penc
else:
return self.cached_penc.unsqueeze(1)
self.cached_penc = None
pos_y = torch.arange(h, device=tensor.device, dtype=self.inv_freq.dtype)
pos_x = torch.arange(w, device=tensor.device, dtype=self.inv_freq.dtype)
if self.normalize:
pos_y = pos_y / (pos_y[-1] + self.eps) * self.scale
pos_x = pos_x / (pos_x[-1] + self.eps) * self.scale
sin_inp_y = torch.einsum("i,j->ij", pos_y, self.inv_freq)
sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq)
emb_y = get_emb(sin_inp_y).unsqueeze(1)
emb_x = get_emb(sin_inp_x)
emb = torch.zeros((h, w, self.dim * 2), device=tensor.device, dtype=tensor.dtype)
emb[:, :, :self.dim] = emb_x
emb[:, :, self.dim:] = emb_y
if not self.channel_last and self.transpose_output:
# cancelled out
pass
elif (not self.channel_last) or (self.transpose_output):
emb = emb.permute(2, 0, 1)
self.cached_penc = emb.unsqueeze(0).repeat(batch_size, 1, 1, 1)
if num_objects is None:
return self.cached_penc
else:
return self.cached_penc.unsqueeze(1)
if __name__ == '__main__':
pe = PositionalEncoding(8).cuda()
input = torch.ones((1, 8, 8, 8)).cuda()
output = pe(input)
# print(output)
print(output[0, :, 0, 0])
print(output[0, :, 0, 5])
print(output[0, 0, :, 0])
print(output[0, 0, 0, :])