sczhou's picture
init code
320e465
import logging
log = logging.getLogger()
def get_parameter_groups(model, stage_cfg, print_log=False):
"""
Assign different weight decays and learning rates to different parameters.
Returns a parameter group which can be passed to the optimizer.
"""
weight_decay = stage_cfg.weight_decay
embed_weight_decay = stage_cfg.embed_weight_decay
backbone_lr_ratio = stage_cfg.backbone_lr_ratio
base_lr = stage_cfg.learning_rate
backbone_params = []
embed_params = []
other_params = []
embedding_names = ['summary_pos', 'query_init', 'query_emb', 'obj_pe']
embedding_names = [e + '.weight' for e in embedding_names]
# inspired by detectron2
memo = set()
for name, param in model.named_parameters():
if not param.requires_grad:
continue
# Avoid duplicating parameters
if param in memo:
continue
memo.add(param)
if name.startswith('module'):
name = name[7:]
inserted = False
if name.startswith('pixel_encoder.'):
backbone_params.append(param)
inserted = True
if print_log:
log.info(f'{name} counted as a backbone parameter.')
else:
for e in embedding_names:
if name.endswith(e):
embed_params.append(param)
inserted = True
if print_log:
log.info(f'{name} counted as an embedding parameter.')
break
if not inserted:
other_params.append(param)
parameter_groups = [
{
'params': backbone_params,
'lr': base_lr * backbone_lr_ratio,
'weight_decay': weight_decay
},
{
'params': embed_params,
'lr': base_lr,
'weight_decay': embed_weight_decay
},
{
'params': other_params,
'lr': base_lr,
'weight_decay': weight_decay
},
]
return parameter_groups