|
import gradio as gr |
|
|
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
import requests |
|
from transformers import AutoImageProcessor, AutoModelForDepthEstimation |
|
|
|
def greet(name): |
|
|
|
|
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf") |
|
model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf") |
|
|
|
|
|
inputs = image_processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
predicted_depth = outputs.predicted_depth |
|
|
|
|
|
prediction = torch.nn.functional.interpolate( |
|
predicted_depth.unsqueeze(1), |
|
size=image.size[::-1], |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
|
|
|
|
output = prediction.squeeze().cpu().numpy() |
|
formatted = (output * 255 / np.max(output)).astype("uint8") |
|
depth = Image.fromarray(formatted) |
|
return name+": " + depth |
|
|
|
iface = gr.Interface(fn=greet, inputs="text", outputs="text") |
|
iface.launch() |