Spaces:
Sleeping
Sleeping
File size: 4,001 Bytes
160f728 9ad3bc3 160f728 6417426 160f728 6417426 160f728 6417426 160f728 9ad3bc3 160f728 9ad3bc3 3809dc8 9ad3bc3 160f728 9ad3bc3 160f728 9ad3bc3 160f728 9ad3bc3 160f728 9ad3bc3 160f728 9ad3bc3 160f728 9ad3bc3 160f728 9ad3bc3 160f728 9ad3bc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
from typing import TypeVar
# Model packages
import torch.cuda
from transformers import pipeline
import time
torch.cuda.empty_cache()
PandasDataFrame = TypeVar('pd.core.frame.DataFrame')
model_type = None # global variable setup
full_text = "" # Define dummy source text (full text) just to enable highlight function to load
model = [] # Define empty list for model functions to run
tokenizer = [] # Define empty list for model functions to run
# Currently set gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda
if torch.cuda.is_available():
torch_device = "cuda"
gpu_layers = 0
else:
torch_device = "cpu"
gpu_layers = 0
print("Running on device:", torch_device)
threads = 8 #torch.get_num_threads()
print("CPU threads:", threads)
# flan-t5-large-stacked-xsum Model parameters
temperature: float = 0.1
top_k: int = 3
top_p: float = 1
repetition_penalty: float = 1.05 #1.3
last_n_tokens: int = 64
max_new_tokens: int = 4096 # 200
seed: int = 42
reset: bool = True
stream: bool = False
threads: int = threads
batch_size:int = 256
context_length:int = 4096
sample = True
class CtransInitConfig_gpu:
def __init__(self,
last_n_tokens=last_n_tokens,
seed=seed,
n_threads=threads,
n_batch=batch_size,
n_ctx=24576,
n_gpu_layers=gpu_layers):
self.last_n_tokens = last_n_tokens
self.seed = seed
self.n_threads = n_threads
self.n_batch = n_batch
self.n_ctx = n_ctx
self.n_gpu_layers = n_gpu_layers
# self.stop: list[str] = field(default_factory=lambda: [stop_string])
def update_gpu(self, new_value):
self.n_gpu_layers = new_value
class CtransInitConfig_cpu(CtransInitConfig_gpu):
def __init__(self):
super().__init__()
self.n_gpu_layers = 0
gpu_config = CtransInitConfig_gpu()
cpu_config = CtransInitConfig_cpu()
class CtransGenGenerationConfig:
def __init__(self, temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repetition_penalty,
seed=seed,
stream=stream,
max_tokens=max_new_tokens
):
self.temperature = temperature
self.top_k = top_k
self.top_p = top_p
self.repeat_penalty = repeat_penalty
self.seed = seed
self.max_tokens=max_tokens
self.stream = stream
def update_temp(self, new_value):
self.temperature = new_value
def llama_cpp_streaming(history, full_prompt, model_type,
temperature=temperature,
max_new_tokens=max_new_tokens,
sample=sample,
repetition_penalty=repetition_penalty,
top_p=top_p,
top_k=top_k
):
#print("Model type is: ", model_type)
#if not full_prompt.strip():
# if history is None:
# history = []
# return history
#tokens = model.tokenize(full_prompt)
gen_config = CtransGenGenerationConfig()
gen_config.update_temp(temperature)
print(vars(gen_config))
# Pull the generated text from the streamer, and update the model output.
start = time.time()
NUM_TOKENS=0
print('-'*4+'Start Generation'+'-'*4)
output = model(
full_prompt, **vars(gen_config))
history[-1][1] = ""
for out in output:
if "choices" in out and len(out["choices"]) > 0 and "text" in out["choices"][0]:
history[-1][1] += out["choices"][0]["text"]
NUM_TOKENS+=1
yield history
else:
print(f"Unexpected output structure: {out}")
time_generate = time.time() - start
print('\n')
print('-'*4+'End Generation'+'-'*4)
print(f'Num of generated tokens: {NUM_TOKENS}')
print(f'Time for complete generation: {time_generate}s')
print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms') |