File size: 4,001 Bytes
160f728
 
 
 
 
 
9ad3bc3
160f728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6417426
160f728
6417426
160f728
6417426
 
160f728
 
 
 
 
 
 
9ad3bc3
160f728
 
9ad3bc3
 
3809dc8
9ad3bc3
 
160f728
 
9ad3bc3
 
 
 
160f728
 
 
9ad3bc3
160f728
 
 
 
9ad3bc3
160f728
 
 
 
 
 
 
 
 
9ad3bc3
160f728
9ad3bc3
 
160f728
 
 
 
9ad3bc3
160f728
9ad3bc3
 
160f728
 
9ad3bc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

from typing import TypeVar

# Model packages
import torch.cuda
from transformers import pipeline
import time

torch.cuda.empty_cache()

PandasDataFrame = TypeVar('pd.core.frame.DataFrame')

model_type = None # global variable setup

full_text = "" # Define dummy source text (full text) just to enable highlight function to load

model = [] # Define empty list for model functions to run
tokenizer = [] # Define empty list for model functions to run


# Currently set gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda
if torch.cuda.is_available():
    torch_device = "cuda"
    gpu_layers = 0
else: 
    torch_device =  "cpu"
    gpu_layers = 0

print("Running on device:", torch_device)
threads = 8 #torch.get_num_threads()
print("CPU threads:", threads)

# flan-t5-large-stacked-xsum Model parameters
temperature: float = 0.1
top_k: int = 3
top_p: float = 1
repetition_penalty: float = 1.05 #1.3
last_n_tokens: int = 64
max_new_tokens: int = 4096 # 200
seed: int = 42
reset: bool = True
stream: bool = False
threads: int = threads
batch_size:int = 256
context_length:int = 4096
sample = True


class CtransInitConfig_gpu:
    def __init__(self,
                 last_n_tokens=last_n_tokens,
                 seed=seed,
                 n_threads=threads,
                 n_batch=batch_size,
                 n_ctx=24576,
                 n_gpu_layers=gpu_layers):

        self.last_n_tokens = last_n_tokens
        self.seed = seed
        self.n_threads = n_threads
        self.n_batch = n_batch
        self.n_ctx = n_ctx
        self.n_gpu_layers = n_gpu_layers
        # self.stop: list[str] = field(default_factory=lambda: [stop_string])

    def update_gpu(self, new_value):
        self.n_gpu_layers = new_value

class CtransInitConfig_cpu(CtransInitConfig_gpu):
    def __init__(self):
        super().__init__()
        self.n_gpu_layers = 0

gpu_config = CtransInitConfig_gpu()
cpu_config = CtransInitConfig_cpu()


class CtransGenGenerationConfig:
    def __init__(self, temperature=temperature,
                 top_k=top_k,
                 top_p=top_p,
                 repeat_penalty=repetition_penalty,
                 seed=seed,
                 stream=stream,
                 max_tokens=max_new_tokens
                 ):
        self.temperature = temperature
        self.top_k = top_k
        self.top_p = top_p
        self.repeat_penalty = repeat_penalty
        self.seed = seed
        self.max_tokens=max_tokens
        self.stream = stream

    def update_temp(self, new_value):
        self.temperature = new_value


def llama_cpp_streaming(history, full_prompt, model_type,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        sample=sample,
        repetition_penalty=repetition_penalty,
        top_p=top_p,
        top_k=top_k
):
#print("Model type is: ", model_type)

#if not full_prompt.strip():
#    if history is None:
#        history = []

#    return history

        #tokens = model.tokenize(full_prompt)

    gen_config = CtransGenGenerationConfig()
    gen_config.update_temp(temperature)

    print(vars(gen_config))

    # Pull the generated text from the streamer, and update the model output.
    start = time.time()
    NUM_TOKENS=0
    print('-'*4+'Start Generation'+'-'*4)

    output = model(
    full_prompt, **vars(gen_config))

    history[-1][1] = ""
    for out in output:

        if "choices" in out and len(out["choices"]) > 0 and "text" in out["choices"][0]:
            history[-1][1] += out["choices"][0]["text"]
            NUM_TOKENS+=1
            yield history
        else:
            print(f"Unexpected output structure: {out}") 

    time_generate = time.time() - start
    print('\n')
    print('-'*4+'End Generation'+'-'*4)
    print(f'Num of generated tokens: {NUM_TOKENS}')
    print(f'Time for complete generation: {time_generate}s')
    print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
    print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')