Spaces:
Sleeping
Sleeping
File size: 10,720 Bytes
9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 3809dc8 9ad3bc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import pandas as pd
import concurrent.futures
import gradio as gr
from chatfuncs.chatfuncs import model, CtransGenGenerationConfig, temperature
from datetime import datetime
from typing import Type
from chatfuncs.helper_functions import output_folder
today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")
PandasDataFrame = Type[pd.DataFrame]
def summarise_text(text:str, text_df:PandasDataFrame, length_slider:int, in_colname:str, model_type:str, progress=gr.Progress()):
'''
Summarise a text or series of texts using Transformers of Llama.cpp
'''
outputs = []
output_name = ""
output_name_parquet = ""
if text_df.empty:
in_colname="text"
in_colname_list_first = in_colname
in_text_df = pd.DataFrame({in_colname_list_first:[text]})
else:
in_text_df = text_df
in_colname_list_first = in_colname
print(model_type)
texts_list = list(in_text_df[in_colname_list_first])
if model_type != "Phi 3 128k (24k tokens max)":
summarised_texts = []
for single_text in progress.tqdm(texts_list, desc = "Summarising texts", unit = "texts"):
summarised_text = model(single_text, max_length=length_slider)
#print(summarised_text)
summarised_text_str = summarised_text[0]['summary_text']
summarised_texts.append(summarised_text_str)
print(summarised_text_str)
#pd.Series(summarised_texts).to_csv("summarised_texts_out.csv")
#print(summarised_texts)
if model_type == "Phi 3 128k (24k tokens max)":
gen_config = CtransGenGenerationConfig()
gen_config.update_temp(temperature)
print(gen_config)
# Define a function that calls your model
# def call_model(formatted_string):#, vars):
# return model(formatted_string)#, vars)
def call_model(formatted_string, gen_config):
"""
Calls your generation model with parameters from the CtransGenGenerationConfig object.
Args:
formatted_string (str): The formatted input text for the model.
gen_config (CtransGenGenerationConfig): An object containing generation parameters.
"""
# Extracting parameters from the gen_config object
temperature = gen_config.temperature
top_k = gen_config.top_k
top_p = gen_config.top_p
repeat_penalty = gen_config.repeat_penalty
seed = gen_config.seed
max_tokens = gen_config.max_tokens
stream = gen_config.stream
# Now you can call your model directly, passing the parameters:
output = model(
formatted_string,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
seed=seed,
max_tokens=max_tokens,
stream=stream,
)
return output
# Set your timeout duration (in seconds)
timeout_duration = 300 # Adjust this value as needed
length = str(length_slider)
from chatfuncs.prompts import instruction_prompt_phi3
summarised_texts = []
for single_text in progress.tqdm(texts_list, desc = "Summarising texts", unit = "texts"):
formatted_string = instruction_prompt_phi3.format(length=length, text=single_text)
# Use ThreadPoolExecutor to enforce a timeout
with concurrent.futures.ThreadPoolExecutor() as executor:
#future = executor.submit(call_model, formatted_string)#, **vars(gen_config))
future = executor.submit(call_model, formatted_string, gen_config)
try:
output = future.result(timeout=timeout_duration)
# Process the output here
except concurrent.futures.TimeoutError:
error_text = f"Timeout (five minutes) occurred for text: {single_text}. Consider using a smaller model."
print(error_text)
return error_text, None
print(output)
output_str = output['choices'][0]['text']
# Find the index of 'ASSISTANT: ' to select only text after this location
# index = output_str.find('ASSISTANT: ')
# # Check if 'ASSISTANT: ' is found in the string
# if index != -1:
# # Add the length of 'ASSISTANT: ' to the index to start from the end of this substring
# start_index = index + len('ASSISTANT: ')
# # Slice the string from this point to the end
# assistant_text = output_str[start_index:]
# else:
# assistant_text = "ASSISTANT: not found in text"
# print(assistant_text)
#summarised_texts.append(assistant_text)
summarised_texts.append(output_str)
#print(summarised_text)
#pd.Series(summarised_texts).to_csv("summarised_texts_out.csv")
if text_df.empty:
#if model_type != "Phi 3 128k (24k tokens max)":
summarised_text_out = summarised_texts[0]#.values()
#if model_type == "Phi 3 128k (24k tokens max)":
# summarised_text_out = summarised_texts[0]
else:
summarised_text_out = summarised_texts #[d['summary_text'] for d in summarised_texts] #summarised_text[0].values()
output_name = output_folder + "summarise_output_" + today_rev + ".csv"
output_name_parquet = output_folder + "summarise_output_" + today_rev + ".parquet"
output_df = pd.DataFrame({"Original text":in_text_df[in_colname_list_first],
"Summarised text":summarised_text_out})
summarised_text_out_str = str(output_df["Summarised text"][0])#.str.replace("dict_values([","").str.replace("])",""))
output_df.to_csv(output_name, index = None)
output_df.to_parquet(output_name_parquet, index = None)
outputs.append(output_name)
outputs.append(output_name_parquet)
return summarised_text_out_str, outputs
# def summarise_text(text, text_df, length_slider, in_colname, model_type, progress=gr.Progress()):
# if text_df.empty:
# in_colname="text"
# in_colname_list_first = in_colname
# in_text_df = pd.DataFrame({in_colname_list_first:[text]})
# else:
# in_text_df = text_df
# in_colname_list_first = in_colname
# print(model_type)
# texts_list = list(in_text_df[in_colname_list_first])
# if model_type != "Phi 3 128k (24k tokens max)":
# summarised_texts = []
# for single_text in progress.tqdm(texts_list, desc = "Summarising texts", unit = "texts"):
# summarised_text = chatf.model(single_text, max_length=length_slider)
# #print(summarised_text)
# summarised_text_str = summarised_text[0]['summary_text']
# summarised_texts.append(summarised_text_str)
# print(summarised_text_str)
# #pd.Series(summarised_texts).to_csv("summarised_texts_out.csv")
# #print(summarised_texts)
# if model_type == "Phi 3 128k (24k tokens max)":
# # Define a function that calls your model
# def call_model(formatted_string, max_length=10000):
# return chatf.model(formatted_string, max_length=max_length)
# # Set your timeout duration (in seconds)
# timeout_duration = 300 # Adjust this value as needed
# length = str(length_slider)
# from chatfuncs.prompts import nous_capybara_prompt
# summarised_texts = []
# for single_text in progress.tqdm(texts_list, desc = "Summarising texts", unit = "texts"):
# formatted_string = nous_capybara_prompt.format(length=length, text=single_text)
# # Use ThreadPoolExecutor to enforce a timeout
# with concurrent.futures.ThreadPoolExecutor() as executor:
# future = executor.submit(call_model, formatted_string, 10000)
# try:
# output = future.result(timeout=timeout_duration)
# # Process the output here
# except concurrent.futures.TimeoutError:
# error_text = f"Timeout (five minutes) occurred for text: {single_text}. Consider using a smaller model."
# print(error_text)
# return error_text, None
# print(output)
# output_str = output[0]['generated_text']
# # Find the index of 'ASSISTANT: ' to select only text after this location
# index = output_str.find('ASSISTANT: ')
# # Check if 'ASSISTANT: ' is found in the string
# if index != -1:
# # Add the length of 'ASSISTANT: ' to the index to start from the end of this substring
# start_index = index + len('ASSISTANT: ')
# # Slice the string from this point to the end
# assistant_text = output_str[start_index:]
# else:
# assistant_text = "ASSISTANT: not found in text"
# print(assistant_text)
# summarised_texts.append(assistant_text)
# #print(summarised_text)
# #pd.Series(summarised_texts).to_csv("summarised_texts_out.csv")
# if text_df.empty:
# #if model_type != "Phi 3 128k (24k tokens max)":
# summarised_text_out = summarised_texts[0]#.values()
# #if model_type == "Phi 3 128k (24k tokens max)":
# # summarised_text_out = summarised_texts[0]
# else:
# summarised_text_out = summarised_texts #[d['summary_text'] for d in summarised_texts] #summarised_text[0].values()
# output_name = "summarise_output_" + today_rev + ".csv"
# output_df = pd.DataFrame({"Original text":in_text_df[in_colname_list_first],
# "Summarised text":summarised_text_out})
# summarised_text_out_str = str(output_df["Summarised text"][0])#.str.replace("dict_values([","").str.replace("])",""))
# output_df.to_csv(output_name, index = None)
# return summarised_text_out_str, output_name
|