Spaces:
Sleeping
Sleeping
Changed small and large models. Large model should now work for summarisation
6417426
from typing import TypeVar | |
# Model packages | |
import torch.cuda | |
from transformers import pipeline | |
torch.cuda.empty_cache() | |
PandasDataFrame = TypeVar('pd.core.frame.DataFrame') | |
model_type = None # global variable setup | |
full_text = "" # Define dummy source text (full text) just to enable highlight function to load | |
model = [] # Define empty list for model functions to run | |
tokenizer = [] # Define empty list for model functions to run | |
# Currently set gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda | |
if torch.cuda.is_available(): | |
torch_device = "cuda" | |
gpu_layers = 0 | |
else: | |
torch_device = "cpu" | |
gpu_layers = 0 | |
print("Running on device:", torch_device) | |
threads = 8 #torch.get_num_threads() | |
print("CPU threads:", threads) | |
# flan-t5-large-stacked-xsum Model parameters | |
temperature: float = 0.1 | |
top_k: int = 3 | |
top_p: float = 1 | |
repetition_penalty: float = 1.05 #1.3 | |
last_n_tokens: int = 64 | |
max_new_tokens: int = 4096 # 200 | |
seed: int = 42 | |
reset: bool = True | |
stream: bool = False | |
threads: int = threads | |
batch_size:int = 256 | |
context_length:int = 4096 | |
sample = True | |
class CtransInitConfig_gpu: | |
def __init__(self, temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
last_n_tokens=last_n_tokens, | |
max_new_tokens=max_new_tokens, | |
seed=seed, | |
reset=reset, | |
stream=stream, | |
threads=threads, | |
batch_size=batch_size, | |
context_length=context_length, | |
gpu_layers=gpu_layers): | |
self.temperature = temperature | |
self.top_k = top_k | |
self.top_p = top_p | |
self.repetition_penalty = repetition_penalty# repetition_penalty | |
self.last_n_tokens = last_n_tokens | |
self.max_new_tokens = max_new_tokens | |
self.seed = seed | |
self.reset = reset | |
self.stream = True #stream | |
self.threads = threads | |
self.batch_size = batch_size | |
self.context_length = context_length | |
self.gpu_layers = gpu_layers | |
# self.stop: list[str] = field(default_factory=lambda: [stop_string]) | |
def update_gpu(self, new_value): | |
self.gpu_layers = new_value | |
class CtransInitConfig_cpu(CtransInitConfig_gpu): | |
def __init__(self): | |
super().__init__() | |
self.gpu_layers = 0 | |
gpu_config = CtransInitConfig_gpu() | |
cpu_config = CtransInitConfig_cpu() | |
class CtransGenGenerationConfig: | |
def __init__(self, temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
last_n_tokens=last_n_tokens, | |
seed=seed, | |
threads=threads, | |
batch_size=batch_size, | |
reset=True | |
): | |
self.temperature = temperature | |
self.top_k = top_k | |
self.top_p = top_p | |
self.repetition_penalty = repetition_penalty# repetition_penalty | |
self.last_n_tokens = last_n_tokens | |
self.seed = seed | |
self.threads = threads | |
self.batch_size = batch_size | |
self.reset = reset | |
def update_temp(self, new_value): | |
self.temperature = new_value |