OpenFLUXPro / app.py
KingNish's picture
Update app.py
df3766c verified
raw
history blame
5.97 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
import time
from diffusers import DiffusionPipeline, AutoencoderTiny
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1
# Device and model setup
dtype = torch.float16
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
).to("cuda")
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.float16).to("cuda")
torch.cuda.empty_cache()
# Inference function
@spaces.GPU(duration=25)
def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(int(float(seed)))
start_time = time.time()
# Only generate the last image in the sequence
img = pipe.generate_images(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator
)
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
return img, seed, latency
# Example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cute white cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
"Create mage of Modern house in minecraft style",
"Imagine steve jobs as Star Wars movie character",
"Lion",
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
]
# --- Gradio UI ---
with gr.Blocks() as demo:
with gr.Column(elem_id="app-container"):
gr.Markdown("# 🎨 Realtime FLUX Image Generator")
gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.")
gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>")
with gr.Row():
with gr.Column(scale=2.5):
result = gr.Image(label="Generated Image", show_label=False, interactive=False)
with gr.Column(scale=1):
prompt = gr.Text(
label="Prompt",
placeholder="Describe the image you want to generate...",
lines=3,
show_label=False,
container=False,
)
generateBtn = gr.Button("🖼️ Generate Image")
enhanceBtn = gr.Button("🚀 Enhance Image")
with gr.Column("Advanced Options"):
with gr.Row():
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False)
latency = gr.Text(label="Latency")
with gr.Row():
seed = gr.Number(label="Seed", value=42)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS)
with gr.Row():
gr.Markdown("### 🌟 Inspiration Gallery")
with gr.Row():
gr.Examples(
examples=examples,
fn=generate_image,
inputs=[prompt],
outputs=[result, seed, latency],
cache_examples="lazy"
)
enhanceBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height],
outputs=[result, seed, latency],
show_progress="full",
queue=False,
concurrency_limit=None
)
generateBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="full",
api_name="RealtimeFlux",
queue=False
)
def update_ui(realtime_enabled):
return {
prompt: gr.update(interactive=True),
generateBtn: gr.update(visible=not realtime_enabled)
}
realtime.change(
fn=update_ui,
inputs=[realtime],
outputs=[prompt, generateBtn],
queue=False,
concurrency_limit=None
)
def realtime_generation(*args):
if args[0]: # If realtime is enabled
return next(generate_image(*args[1:]))
prompt.submit(
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="full",
queue=False,
concurrency_limit=None
)
for component in [prompt, width, height, num_inference_steps]:
component.input(
fn=realtime_generation,
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="hidden",
trigger_mode="always_last",
queue=False,
concurrency_limit=None
)
# Launch the app
demo.launch()