seawolf2357 commited on
Commit
93c305a
1 Parent(s): cdb7645

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -40
app.py CHANGED
@@ -1,11 +1,24 @@
1
  import torch
2
  import gradio as gr
3
- from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, SparseControlNetModel, EulerAncestralDiscreteScheduler
4
  from diffusers.utils import export_to_gif, load_image
 
5
 
6
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
 
 
 
 
 
 
 
 
 
 
8
  def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale):
 
 
 
9
  motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device)
10
  controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device)
11
  vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to(device)
@@ -43,52 +56,18 @@ def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_fr
43
  export_to_gif(video, "output.gif")
44
  return "output.gif"
45
 
46
- def generate_simple_video(prompt):
47
- adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16).to(device)
48
- pipe = AnimateDiffPipeline.from_pretrained("SG161222/Realistic_Vision_V6.0_B1_noVAE", motion_adapter=adapter, torch_dtype=torch.float16).to(device)
49
- pipe.scheduler = EulerAncestralDiscreteScheduler(
50
- beta_schedule="linear",
51
- beta_start=0.00085,
52
- beta_end=0.012,
53
- )
54
-
55
- pipe.enable_free_noise()
56
- pipe.vae.enable_slicing()
57
- pipe.enable_model_cpu_offload()
58
-
59
- frames = pipe(
60
- prompt,
61
- num_frames=128,
62
- num_inference_steps=100,
63
- guidance_scale=15.0,
64
- decode_chunk_size=1,
65
- ).frames[0]
66
-
67
- export_to_gif(frames, "simple_output.gif")
68
- return "simple_output.gif"
69
-
70
- demo1 = gr.Interface(
71
  fn=generate_video,
72
  inputs=[
73
- gr.Textbox(label="Prompt", value="an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality"),
74
- gr.Textbox(label="Negative Prompt", value="low quality, worst quality, letterboxed"),
75
  gr.Slider(label="Number of Inference Steps", minimum=1, maximum=200, step=1, value=100),
76
  gr.Textbox(label="Conditioning Frame Indices", value="[0, 8, 15]"),
77
  gr.Slider(label="ControlNet Conditioning Scale", minimum=0.1, maximum=2.0, step=0.1, value=1.0)
78
  ],
79
  outputs=gr.Image(label="Generated Video"),
80
- title="Generate Video with AnimateDiffSparseControlNetPipeline",
81
- description="Generate a video using the AnimateDiffSparseControlNetPipeline."
82
  )
83
 
84
- demo2 = gr.Interface(
85
- fn=generate_simple_video,
86
- inputs=gr.Textbox(label="Prompt", value="An astronaut riding a horse on Mars."),
87
- outputs=gr.Image(label="Generated Simple Video"),
88
- title="Generate Simple Video with AnimateDiff",
89
- description="Generate a simple video using the AnimateDiffPipeline."
90
- )
91
-
92
- demo = gr.TabbedInterface([demo1, demo2], ["Advanced Video Generation", "Simple Video Generation"])
93
-
94
  demo.launch()
 
1
  import torch
2
  import gradio as gr
3
+ from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, SparseControlNetModel
4
  from diffusers.utils import export_to_gif, load_image
5
+ from transformers import pipeline
6
 
7
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
 
9
+ # 한글-영어 번역 모델 로드
10
+ translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
11
+
12
+ def translate_korean_to_english(text):
13
+ if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
14
+ translated = translator(text)[0]['translation_text']
15
+ return translated
16
+ return text
17
+
18
  def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale):
19
+ prompt = translate_korean_to_english(prompt)
20
+ negative_prompt = translate_korean_to_english(negative_prompt)
21
+
22
  motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device)
23
  controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device)
24
  vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to(device)
 
56
  export_to_gif(video, "output.gif")
57
  return "output.gif"
58
 
59
+ demo = gr.Interface(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  fn=generate_video,
61
  inputs=[
62
+ gr.Textbox(label="Prompt (한글 또는 영어)", value="사이버펑크 도시의 공중 전망, 밤, 네온 불빛, 걸작, 고품질"),
63
+ gr.Textbox(label="Negative Prompt (한글 또는 영어)", value="저품질, 최악의 품질, 레터박스"),
64
  gr.Slider(label="Number of Inference Steps", minimum=1, maximum=200, step=1, value=100),
65
  gr.Textbox(label="Conditioning Frame Indices", value="[0, 8, 15]"),
66
  gr.Slider(label="ControlNet Conditioning Scale", minimum=0.1, maximum=2.0, step=0.1, value=1.0)
67
  ],
68
  outputs=gr.Image(label="Generated Video"),
69
+ title="AnimateDiffSparseControlNetPipeline을 사용한 비디오 생성",
70
+ description="AnimateDiffSparseControlNetPipeline을 사용하여 비디오를 생성합니다. 한글 또는 영어로 프롬프트를 입력할 수 있습니다."
71
  )
72
 
 
 
 
 
 
 
 
 
 
 
73
  demo.launch()