File size: 10,599 Bytes
d126161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import spaces
import gradio as gr
import os
import sys
import argparse
import random
import time
import numpy as np
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from utils.utils import instantiate_from_config
sys.path.insert(0, "scripts/evaluation")
from funcs import (
    batch_ddim_sampling,
    load_model_checkpoint,
    get_latent_z,
    save_videos
)
from transformers import pipeline
from diffusers import DiffusionPipeline

# ์ƒ์ˆ˜ ์ •์˜
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# DynamiCrafter ๋ชจ๋ธ ์„ค์ •
def download_model():
    REPO_ID = 'Doubiiu/DynamiCrafter_1024'
    filename_list = ['model.ckpt']
    if not os.path.exists('./checkpoints/dynamicrafter_1024_v1/'):
        os.makedirs('./checkpoints/dynamicrafter_1024_v1/')
    for filename in filename_list:
        local_file = os.path.join('./checkpoints/dynamicrafter_1024_v1/', filename)
        if not os.path.exists(local_file):
            hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_1024_v1/', force_download=True)

# ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ ์‹คํ–‰
download_model()

ckpt_path='checkpoints/dynamicrafter_1024_v1/model.ckpt'
config_file='configs/inference_1024_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False   
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
model = model.cuda()

# ๋ฒˆ์—ญ ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")


import torch
from diffusers import DiffusionPipeline

# FLUX ๋ชจ๋ธ ์„ค์ •
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()


# ๋ฉ”๋ชจ๋ฆฌ ์ตœ์ ํ™” (GPU ์‚ฌ์šฉ ์‹œ์—๋งŒ ์ ์šฉ)
if torch.cuda.is_available():
    pipe.enable_attention_slicing()

@spaces.GPU(duration=300)
def infer_t2i(prompt, seed=42, randomize_seed=False, width=1024, height=576, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    # ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
    if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
        translated = translator(prompt, max_length=512)[0]['translation_text']
        prompt = translated
        print(f"Translated prompt: {prompt}")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    with torch.no_grad():
        image = pipe(
            prompt=prompt, 
            width=width,
            height=height,
            num_inference_steps=num_inference_steps, 
            generator=generator,
            guidance_scale=guidance_scale
        ).images[0]
    
    torch.cuda.empty_cache()
    return image, seed, prompt  # ๋ฒˆ์—ญ๋œ ํ”„๋กฌํ”„ํŠธ๋„ ๋ฐ˜ํ™˜

    
@spaces.GPU(duration=300)
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video_length=2):
    # ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
    if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
        translated = translator(prompt, max_length=512)[0]['translation_text']
        prompt = translated
        print(f"Translated prompt: {prompt}")

    resolution = (576, 1024)
    save_fps = 8
    seed_everything(seed)
    transform = transforms.Compose([
        transforms.Resize(min(resolution)),
        transforms.CenterCrop(resolution),
        ])
    torch.cuda.empty_cache()
    print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
    start = time.time()
    if steps > 60:
        steps = 60 

    batch_size=1
    channels = model.model.diffusion_model.out_channels
    frames = int(video_length * save_fps)  # ๋น„๋””์˜ค ๊ธธ์ด์— ๋”ฐ๋ฅธ ํ”„๋ ˆ์ž„ ์ˆ˜ ๊ณ„์‚ฐ
    h, w = resolution[0] // 8, resolution[1] // 8
    noise_shape = [batch_size, channels, frames, h, w]

    # text cond
    with torch.no_grad(), torch.cuda.amp.autocast():
        text_emb = model.get_learned_conditioning([prompt])
    
        # img cond
        img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
        img_tensor = (img_tensor / 255. - 0.5) * 2
    
        image_tensor_resized = transform(img_tensor) #3,256,256
        videos = image_tensor_resized.unsqueeze(0) # bchw
        
        z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
        
        img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
    
        cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
        img_emb = model.image_proj_model(cond_images)
    
        imtext_cond = torch.cat([text_emb, img_emb], dim=1)
    
        fs = torch.tensor([fs], dtype=torch.long, device=model.device)
        cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
        
        ## inference
        batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
        ## b,samples,c,t,h,w
    
        video_path = './output.mp4'
        save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
    return video_path

i2v_examples = [
    ['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123, 2],
]


css = """
.tab-nav {
    border-bottom: 2px solid #ddd;
    padding: 0;
    margin-bottom: 20px;
}
.tab-nav button {
    background-color: #f8f8f8;
    border: none;
    outline: none;
    cursor: pointer;
    padding: 10px 20px;
    transition: 0.3s;
    font-size: 16px;
    border-radius: 10px 10px 0 0;
    margin-right: 5px;
}
.tab-nav button:hover {
    background-color: #ddd;
}
.tab-nav button.selected {
    background-color: #fff;
    border: 2px solid #ddd;
    border-bottom: 2px solid #fff;
    font-weight: bold;
}
.tab-content {
    padding: 20px;
    border: 2px solid #ddd;
    border-radius: 0 10px 10px 10px;
}
/* ํƒญ๋ณ„ ์ƒ‰์ƒ */
.tab-nav button:nth-child(1) { border-top: 3px solid #ff6b6b; }
.tab-nav button:nth-child(2) { border-top: 3px solid #4ecdc4; }
.tab-nav button:nth-child(3) { border-top: 3px solid #f7b731; }
"""


with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
    gr.Markdown("์ด๋ฏธ์ง€๋กœ ์˜์ƒ ์ƒ์„ฑ ํ…Œ์ŠคํŠธ (ํ•œ๊ธ€ ํ”„๋กฌํ”„ํŠธ ์ง€์›)")
    with gr.Tab(label='Image+Text to Video'):
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
                    with gr.Row():
                        i2v_input_text = gr.Text(label='Prompts')
                    with gr.Row():
                        i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
                        i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
                        i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=3.5, elem_id="i2v_cfg_scale")
                    with gr.Row():
                        i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=30)
                        i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=8)
                    with gr.Row():
                        i2v_video_length = gr.Slider(minimum=2, maximum=8, step=1, elem_id="i2v_video_length", label="Video Length (seconds)", value=2)
                    i2v_end_btn = gr.Button("Generate")
                with gr.Row():
                    i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)

            gr.Examples(examples=i2v_examples,
                        inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length],
                        outputs=[i2v_output_video],
                        fn = infer,
                        cache_examples=True,
            )
        i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length],
                        outputs=[i2v_output_video],
                        fn = infer
        )


    with gr.Tab(label='Text to Image'):
        with gr.Column():
            with gr.Row():
                t2i_input_text = gr.Text(label='Prompt')
            with gr.Row():
                t2i_seed = gr.Slider(label='Seed', minimum=0, maximum=MAX_SEED, step=1, value=42)
                t2i_randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
            with gr.Row():
                t2i_width = gr.Slider(label='Width', minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=1024)
                t2i_height = gr.Slider(label='Height', minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=576)
            with gr.Row():
                t2i_guidance_scale = gr.Slider(label='Guidance Scale', minimum=1.0, maximum=20.0, step=0.1, value=5.0)
                t2i_num_inference_steps = gr.Slider(label='Inference Steps', minimum=1, maximum=100, step=1, value=28)
#            t2i_generate_btn = gr.Button("Generate")
#            t2i_output_image = gr.Image(label="Generated Image", elem_id="t2i_output_img")
#            t2i_output_seed = gr.Number(label="Used Seed", elem_id="t2i_output_seed")

        t2i_generate_btn = gr.Button("Generate")
        t2i_output_image = gr.Image(label="Generated Image", elem_id="t2i_output_img")
        t2i_output_seed = gr.Number(label="Used Seed", elem_id="t2i_output_seed")
        t2i_translated_prompt = gr.Text(label="Translated Prompt (if applicable)", elem_id="t2i_translated_prompt")

    t2i_generate_btn.click(
        fn=infer_t2i,
        inputs=[t2i_input_text, t2i_seed, t2i_randomize_seed, t2i_width, t2i_height, t2i_guidance_scale, t2i_num_inference_steps],
        outputs=[t2i_output_image, t2i_output_seed, t2i_translated_prompt]
    )
    
dynamicrafter_iface.queue(max_size=12).launch(show_api=True)