Spaces:
Paused
Paused
File size: 10,599 Bytes
d126161 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import spaces
import gradio as gr
import os
import sys
import argparse
import random
import time
import numpy as np
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from utils.utils import instantiate_from_config
sys.path.insert(0, "scripts/evaluation")
from funcs import (
batch_ddim_sampling,
load_model_checkpoint,
get_latent_z,
save_videos
)
from transformers import pipeline
from diffusers import DiffusionPipeline
# ์์ ์ ์
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# DynamiCrafter ๋ชจ๋ธ ์ค์
def download_model():
REPO_ID = 'Doubiiu/DynamiCrafter_1024'
filename_list = ['model.ckpt']
if not os.path.exists('./checkpoints/dynamicrafter_1024_v1/'):
os.makedirs('./checkpoints/dynamicrafter_1024_v1/')
for filename in filename_list:
local_file = os.path.join('./checkpoints/dynamicrafter_1024_v1/', filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_1024_v1/', force_download=True)
# ๋ชจ๋ธ ๋ค์ด๋ก๋ ์คํ
download_model()
ckpt_path='checkpoints/dynamicrafter_1024_v1/model.ckpt'
config_file='configs/inference_1024_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
model = model.cuda()
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
import torch
from diffusers import DiffusionPipeline
# FLUX ๋ชจ๋ธ ์ค์
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
# ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ (GPU ์ฌ์ฉ ์์๋ง ์ ์ฉ)
if torch.cuda.is_available():
pipe.enable_attention_slicing()
@spaces.GPU(duration=300)
def infer_t2i(prompt, seed=42, randomize_seed=False, width=1024, height=576, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
# ํ๊ธ ์
๋ ฅ ๊ฐ์ง ๋ฐ ๋ฒ์ญ
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
translated = translator(prompt, max_length=512)[0]['translation_text']
prompt = translated
print(f"Translated prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
with torch.no_grad():
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
torch.cuda.empty_cache()
return image, seed, prompt # ๋ฒ์ญ๋ ํ๋กฌํํธ๋ ๋ฐํ
@spaces.GPU(duration=300)
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video_length=2):
# ํ๊ธ ์
๋ ฅ ๊ฐ์ง ๋ฐ ๋ฒ์ญ
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
translated = translator(prompt, max_length=512)[0]['translation_text']
prompt = translated
print(f"Translated prompt: {prompt}")
resolution = (576, 1024)
save_fps = 8
seed_everything(seed)
transform = transforms.Compose([
transforms.Resize(min(resolution)),
transforms.CenterCrop(resolution),
])
torch.cuda.empty_cache()
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
start = time.time()
if steps > 60:
steps = 60
batch_size=1
channels = model.model.diffusion_model.out_channels
frames = int(video_length * save_fps) # ๋น๋์ค ๊ธธ์ด์ ๋ฐ๋ฅธ ํ๋ ์ ์ ๊ณ์ฐ
h, w = resolution[0] // 8, resolution[1] // 8
noise_shape = [batch_size, channels, frames, h, w]
# text cond
with torch.no_grad(), torch.cuda.amp.autocast():
text_emb = model.get_learned_conditioning([prompt])
# img cond
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
img_tensor = (img_tensor / 255. - 0.5) * 2
image_tensor_resized = transform(img_tensor) #3,256,256
videos = image_tensor_resized.unsqueeze(0) # bchw
z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
img_emb = model.image_proj_model(cond_images)
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
## inference
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
## b,samples,c,t,h,w
video_path = './output.mp4'
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
return video_path
i2v_examples = [
['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123, 2],
]
css = """
.tab-nav {
border-bottom: 2px solid #ddd;
padding: 0;
margin-bottom: 20px;
}
.tab-nav button {
background-color: #f8f8f8;
border: none;
outline: none;
cursor: pointer;
padding: 10px 20px;
transition: 0.3s;
font-size: 16px;
border-radius: 10px 10px 0 0;
margin-right: 5px;
}
.tab-nav button:hover {
background-color: #ddd;
}
.tab-nav button.selected {
background-color: #fff;
border: 2px solid #ddd;
border-bottom: 2px solid #fff;
font-weight: bold;
}
.tab-content {
padding: 20px;
border: 2px solid #ddd;
border-radius: 0 10px 10px 10px;
}
/* ํญ๋ณ ์์ */
.tab-nav button:nth-child(1) { border-top: 3px solid #ff6b6b; }
.tab-nav button:nth-child(2) { border-top: 3px solid #4ecdc4; }
.tab-nav button:nth-child(3) { border-top: 3px solid #f7b731; }
"""
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
gr.Markdown("์ด๋ฏธ์ง๋ก ์์ ์์ฑ ํ
์คํธ (ํ๊ธ ํ๋กฌํํธ ์ง์)")
with gr.Tab(label='Image+Text to Video'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
with gr.Row():
i2v_input_text = gr.Text(label='Prompts')
with gr.Row():
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=3.5, elem_id="i2v_cfg_scale")
with gr.Row():
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=30)
i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=8)
with gr.Row():
i2v_video_length = gr.Slider(minimum=2, maximum=8, step=1, elem_id="i2v_video_length", label="Video Length (seconds)", value=2)
i2v_end_btn = gr.Button("Generate")
with gr.Row():
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
gr.Examples(examples=i2v_examples,
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length],
outputs=[i2v_output_video],
fn = infer,
cache_examples=True,
)
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length],
outputs=[i2v_output_video],
fn = infer
)
with gr.Tab(label='Text to Image'):
with gr.Column():
with gr.Row():
t2i_input_text = gr.Text(label='Prompt')
with gr.Row():
t2i_seed = gr.Slider(label='Seed', minimum=0, maximum=MAX_SEED, step=1, value=42)
t2i_randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
with gr.Row():
t2i_width = gr.Slider(label='Width', minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=1024)
t2i_height = gr.Slider(label='Height', minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=576)
with gr.Row():
t2i_guidance_scale = gr.Slider(label='Guidance Scale', minimum=1.0, maximum=20.0, step=0.1, value=5.0)
t2i_num_inference_steps = gr.Slider(label='Inference Steps', minimum=1, maximum=100, step=1, value=28)
# t2i_generate_btn = gr.Button("Generate")
# t2i_output_image = gr.Image(label="Generated Image", elem_id="t2i_output_img")
# t2i_output_seed = gr.Number(label="Used Seed", elem_id="t2i_output_seed")
t2i_generate_btn = gr.Button("Generate")
t2i_output_image = gr.Image(label="Generated Image", elem_id="t2i_output_img")
t2i_output_seed = gr.Number(label="Used Seed", elem_id="t2i_output_seed")
t2i_translated_prompt = gr.Text(label="Translated Prompt (if applicable)", elem_id="t2i_translated_prompt")
t2i_generate_btn.click(
fn=infer_t2i,
inputs=[t2i_input_text, t2i_seed, t2i_randomize_seed, t2i_width, t2i_height, t2i_guidance_scale, t2i_num_inference_steps],
outputs=[t2i_output_image, t2i_output_seed, t2i_translated_prompt]
)
dynamicrafter_iface.queue(max_size=12).launch(show_api=True) |