Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import copy | |
import numbers | |
from typing import Any, List, Tuple, Union | |
import torch | |
from torch import Tensor, nn | |
from torch.nn import functional as F | |
from modules.general.scaling import ActivationBalancer | |
from modules.general.scaling import BasicNorm as _BasicNorm | |
_shape_t = Union[int, List[int], torch.Size] | |
class LayerNorm(nn.Module): | |
__constants__ = ["normalized_shape", "eps", "elementwise_affine"] | |
normalized_shape: Tuple[int, ...] | |
eps: float | |
elementwise_affine: bool | |
def __init__( | |
self, | |
normalized_shape: _shape_t, | |
eps: float = 1e-5, | |
elementwise_affine: bool = True, | |
device=None, | |
dtype=None, | |
) -> None: | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super(LayerNorm, self).__init__() | |
if isinstance(normalized_shape, numbers.Integral): | |
normalized_shape = (normalized_shape,) | |
self.normalized_shape = tuple(normalized_shape) | |
self.eps = eps | |
self.elementwise_affine = elementwise_affine | |
if self.elementwise_affine: | |
self.weight = nn.Parameter( | |
torch.empty(self.normalized_shape, **factory_kwargs) | |
) | |
self.bias = nn.Parameter( | |
torch.empty(self.normalized_shape, **factory_kwargs) | |
) | |
else: | |
self.register_parameter("weight", None) | |
self.register_parameter("bias", None) | |
self.reset_parameters() | |
def reset_parameters(self) -> None: | |
if self.elementwise_affine: | |
nn.init.ones_(self.weight) | |
nn.init.zeros_(self.bias) | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
output = F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps) | |
return output, embedding | |
assert embedding is None | |
return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps) | |
def extra_repr(self) -> str: | |
return ( | |
"{normalized_shape}, eps={eps}, " | |
"elementwise_affine={elementwise_affine}".format(**self.__dict__) | |
) | |
class AdaptiveLayerNorm(nn.Module): | |
r"""Adaptive Layer Normalization""" | |
def __init__(self, d_model, norm) -> None: | |
super(AdaptiveLayerNorm, self).__init__() | |
self.project_layer = nn.Linear(d_model, 2 * d_model) | |
self.norm = norm | |
self.d_model = d_model | |
self.eps = self.norm.eps | |
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
weight, bias = torch.split( | |
self.project_layer(embedding), | |
split_size_or_sections=self.d_model, | |
dim=-1, | |
) | |
return (weight * self.norm(input) + bias, embedding) | |
weight, bias = torch.split( | |
self.project_layer(embedding), | |
split_size_or_sections=self.d_model, | |
dim=-1, | |
) | |
return weight * self.norm(input) + bias | |
class BasicNorm(_BasicNorm): | |
def __init__( | |
self, | |
d_model: int, | |
eps: float = 1e-5, | |
device=None, | |
dtype=None, | |
): | |
super(BasicNorm, self).__init__(d_model, eps=eps) | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
return ( | |
super(BasicNorm, self).forward(input), | |
embedding, | |
) | |
assert embedding is None | |
return super(BasicNorm, self).forward(input) | |
class BalancedBasicNorm(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
eps: float = 1e-5, | |
device=None, | |
dtype=None, | |
): | |
super(BalancedBasicNorm, self).__init__() | |
self.balancer = ActivationBalancer( | |
d_model, | |
channel_dim=-1, | |
min_positive=0.45, | |
max_positive=0.55, | |
max_abs=6.0, | |
) | |
self.norm = BasicNorm(d_model, eps, device=device, dtype=dtype) | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
return self.norm((self.balancer(input), embedding)) | |
assert embedding is None | |
return self.norm(self.balancer(input)) | |
class IdentityNorm(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
eps: float = 1e-5, | |
device=None, | |
dtype=None, | |
) -> None: | |
super(IdentityNorm, self).__init__() | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
return input | |
assert embedding is None | |
return input | |