Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# This module is modified from [Whisper](https://github.com/openai/whisper.git). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{openai-whisper, | |
# author = {Alec Radford and | |
# Jong Wook Kim and | |
# Tao Xu and | |
# Greg Brockman and | |
# Christine McLeavey and | |
# Ilya Sutskever}, | |
# title = {Robust Speech Recognition via Large-Scale Weak Supervision}, | |
# booktitle = {{ICML}}, | |
# series = {Proceedings of Machine Learning Research}, | |
# volume = {202}, | |
# pages = {28492--28518}, | |
# publisher = {{PMLR}}, | |
# year = {2023} | |
# } | |
# ``` | |
# | |
import argparse | |
import os | |
import sys | |
import warnings | |
from typing import List, Optional, Tuple, Union, TYPE_CHECKING | |
import numpy as np | |
import torch | |
import tqdm | |
from .audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, pad_or_trim, log_mel_spectrogram | |
from .decoding import DecodingOptions, DecodingResult | |
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer | |
from .utils import ( | |
exact_div, | |
format_timestamp, | |
optional_int, | |
optional_float, | |
str2bool, | |
write_txt, | |
write_vtt, | |
write_srt, | |
) | |
if TYPE_CHECKING: | |
from .model import Whisper | |
def transcribe( | |
model: "Whisper", | |
audio: Union[str, np.ndarray, torch.Tensor], | |
*, | |
verbose: Optional[bool] = None, | |
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), | |
compression_ratio_threshold: Optional[float] = 2.4, | |
logprob_threshold: Optional[float] = -1.0, | |
no_speech_threshold: Optional[float] = 0.6, | |
condition_on_previous_text: bool = True, | |
**decode_options, | |
): | |
""" | |
Transcribe an audio file using Whisper | |
Parameters | |
---------- | |
model: Whisper | |
The Whisper model instance | |
audio: Union[str, np.ndarray, torch.Tensor] | |
The path to the audio file to open, or the audio waveform | |
verbose: bool | |
Whether to display the text being decoded to the console. If True, displays all the details, | |
If False, displays minimal details. If None, does not display anything | |
temperature: Union[float, Tuple[float, ...]] | |
Temperature for sampling. It can be a tuple of temperatures, which will be successively used | |
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`. | |
compression_ratio_threshold: float | |
If the gzip compression ratio is above this value, treat as failed | |
logprob_threshold: float | |
If the average log probability over sampled tokens is below this value, treat as failed | |
no_speech_threshold: float | |
If the no_speech probability is higher than this value AND the average log probability | |
over sampled tokens is below `logprob_threshold`, consider the segment as silent | |
condition_on_previous_text: bool | |
if True, the previous output of the model is provided as a prompt for the next window; | |
disabling may make the text inconsistent across windows, but the model becomes less prone to | |
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync. | |
decode_options: dict | |
Keyword arguments to construct `DecodingOptions` instances | |
Returns | |
------- | |
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and | |
the spoken language ("language"), which is detected when `decode_options["language"]` is None. | |
""" | |
dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32 | |
if model.device == torch.device("cpu"): | |
if torch.cuda.is_available(): | |
warnings.warn("Performing inference on CPU when CUDA is available") | |
if dtype == torch.float16: | |
warnings.warn("FP16 is not supported on CPU; using FP32 instead") | |
dtype = torch.float32 | |
if dtype == torch.float32: | |
decode_options["fp16"] = False | |
mel = log_mel_spectrogram(audio) | |
if decode_options.get("language", None) is None: | |
if not model.is_multilingual: | |
decode_options["language"] = "en" | |
else: | |
if verbose: | |
print( | |
"Detecting language using up to the first 30 seconds. Use `--language` to specify the language" | |
) | |
segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype) | |
_, probs = model.detect_language(segment) | |
decode_options["language"] = max(probs, key=probs.get) | |
if verbose is not None: | |
print( | |
f"Detected language: {LANGUAGES[decode_options['language']].title()}" | |
) | |
language = decode_options["language"] | |
task = decode_options.get("task", "transcribe") | |
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=task) | |
def decode_with_fallback(segment: torch.Tensor) -> DecodingResult: | |
temperatures = ( | |
[temperature] if isinstance(temperature, (int, float)) else temperature | |
) | |
decode_result = None | |
for t in temperatures: | |
kwargs = {**decode_options} | |
if t > 0: | |
# disable beam_size and patience when t > 0 | |
kwargs.pop("beam_size", None) | |
kwargs.pop("patience", None) | |
else: | |
# disable best_of when t == 0 | |
kwargs.pop("best_of", None) | |
options = DecodingOptions(**kwargs, temperature=t) | |
decode_result = model.decode(segment, options) | |
needs_fallback = False | |
if ( | |
compression_ratio_threshold is not None | |
and decode_result.compression_ratio > compression_ratio_threshold | |
): | |
needs_fallback = True # too repetitive | |
if ( | |
logprob_threshold is not None | |
and decode_result.avg_logprob < logprob_threshold | |
): | |
needs_fallback = True # average log probability is too low | |
if not needs_fallback: | |
break | |
return decode_result | |
seek = 0 | |
input_stride = exact_div( | |
N_FRAMES, model.dims.n_audio_ctx | |
) # mel frames per output token: 2 | |
time_precision = ( | |
input_stride * HOP_LENGTH / SAMPLE_RATE | |
) # time per output token: 0.02 (seconds) | |
all_tokens = [] | |
all_segments = [] | |
prompt_reset_since = 0 | |
initial_prompt = decode_options.pop("initial_prompt", None) or [] | |
if initial_prompt: | |
initial_prompt = tokenizer.encode(" " + initial_prompt.strip()) | |
all_tokens.extend(initial_prompt) | |
def add_segment( | |
*, start: float, end: float, text_tokens: torch.Tensor, result: DecodingResult | |
): | |
text = tokenizer.decode( | |
[token for token in text_tokens if token < tokenizer.eot] | |
) | |
if len(text.strip()) == 0: # skip empty text output | |
return | |
all_segments.append( | |
{ | |
"id": len(all_segments), | |
"seek": seek, | |
"start": start, | |
"end": end, | |
"text": text, | |
"tokens": text_tokens.tolist(), | |
"temperature": result.temperature, | |
"avg_logprob": result.avg_logprob, | |
"compression_ratio": result.compression_ratio, | |
"no_speech_prob": result.no_speech_prob, | |
} | |
) | |
if verbose: | |
line = f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}\n" | |
# compared to just `print(line)`, this replaces any character not representable using | |
# the system default encoding with an '?', avoiding UnicodeEncodeError. | |
sys.stdout.buffer.write( | |
line.encode(sys.getdefaultencoding(), errors="replace") | |
) | |
sys.stdout.flush() | |
# show the progress bar when verbose is False (otherwise the transcribed text will be printed) | |
num_frames = mel.shape[-1] | |
previous_seek_value = seek | |
with tqdm.tqdm( | |
total=num_frames, unit="frames", disable=verbose is not False | |
) as pbar: | |
while seek < num_frames: | |
timestamp_offset = float(seek * HOP_LENGTH / SAMPLE_RATE) | |
segment = pad_or_trim(mel[:, seek:], N_FRAMES).to(model.device).to(dtype) | |
segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE | |
decode_options["prompt"] = all_tokens[prompt_reset_since:] | |
result: DecodingResult = decode_with_fallback(segment) | |
tokens = torch.tensor(result.tokens) | |
if no_speech_threshold is not None: | |
# no voice activity check | |
should_skip = result.no_speech_prob > no_speech_threshold | |
if ( | |
logprob_threshold is not None | |
and result.avg_logprob > logprob_threshold | |
): | |
# don't skip if the logprob is high enough, despite the no_speech_prob | |
should_skip = False | |
if should_skip: | |
seek += segment.shape[ | |
-1 | |
] # fast-forward to the next segment boundary | |
continue | |
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin) | |
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[ | |
0 | |
].add_(1) | |
if ( | |
len(consecutive) > 0 | |
): # if the output contains two consecutive timestamp tokens | |
last_slice = 0 | |
for current_slice in consecutive: | |
sliced_tokens = tokens[last_slice:current_slice] | |
start_timestamp_position = ( | |
sliced_tokens[0].item() - tokenizer.timestamp_begin | |
) | |
end_timestamp_position = ( | |
sliced_tokens[-1].item() - tokenizer.timestamp_begin | |
) | |
add_segment( | |
start=timestamp_offset | |
+ start_timestamp_position * time_precision, | |
end=timestamp_offset + end_timestamp_position * time_precision, | |
text_tokens=sliced_tokens[1:-1], | |
result=result, | |
) | |
last_slice = current_slice | |
last_timestamp_position = ( | |
tokens[last_slice - 1].item() - tokenizer.timestamp_begin | |
) | |
seek += last_timestamp_position * input_stride | |
all_tokens.extend(tokens[: last_slice + 1].tolist()) | |
else: | |
duration = segment_duration | |
timestamps = tokens[timestamp_tokens.nonzero().flatten()] | |
if ( | |
len(timestamps) > 0 | |
and timestamps[-1].item() != tokenizer.timestamp_begin | |
): | |
# no consecutive timestamps but it has a timestamp; use the last one. | |
# single timestamp at the end means no speech after the last timestamp. | |
last_timestamp_position = ( | |
timestamps[-1].item() - tokenizer.timestamp_begin | |
) | |
duration = last_timestamp_position * time_precision | |
add_segment( | |
start=timestamp_offset, | |
end=timestamp_offset + duration, | |
text_tokens=tokens, | |
result=result, | |
) | |
seek += segment.shape[-1] | |
all_tokens.extend(tokens.tolist()) | |
if not condition_on_previous_text or result.temperature > 0.5: | |
# do not feed the prompt tokens if a high temperature was used | |
prompt_reset_since = len(all_tokens) | |
# update progress bar | |
pbar.update(min(num_frames, seek) - previous_seek_value) | |
previous_seek_value = seek | |
return dict( | |
text=tokenizer.decode(all_tokens[len(initial_prompt) :]), | |
segments=all_segments, | |
language=language, | |
) | |
def cli(): | |
from . import available_models | |
parser = argparse.ArgumentParser( | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter | |
) | |
parser.add_argument( | |
"audio", nargs="+", type=str, help="audio file(s) to transcribe" | |
) | |
parser.add_argument( | |
"--model", | |
default="small", | |
choices=available_models(), | |
help="name of the Whisper model to use", | |
) | |
parser.add_argument( | |
"--model_dir", | |
type=str, | |
default=None, | |
help="the path to save model files; uses ~/.cache/whisper by default", | |
) | |
parser.add_argument( | |
"--device", | |
default="cuda" if torch.cuda.is_available() else "cpu", | |
help="device to use for PyTorch inference", | |
) | |
parser.add_argument( | |
"--output_dir", | |
"-o", | |
type=str, | |
default=".", | |
help="directory to save the outputs", | |
) | |
parser.add_argument( | |
"--verbose", | |
type=str2bool, | |
default=True, | |
help="whether to print out the progress and debug messages", | |
) | |
parser.add_argument( | |
"--task", | |
type=str, | |
default="transcribe", | |
choices=["transcribe", "translate"], | |
help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')", | |
) | |
parser.add_argument( | |
"--language", | |
type=str, | |
default=None, | |
choices=sorted(LANGUAGES.keys()) | |
+ sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]), | |
help="language spoken in the audio, specify None to perform language detection", | |
) | |
parser.add_argument( | |
"--temperature", type=float, default=0, help="temperature to use for sampling" | |
) | |
parser.add_argument( | |
"--best_of", | |
type=optional_int, | |
default=5, | |
help="number of candidates when sampling with non-zero temperature", | |
) | |
parser.add_argument( | |
"--beam_size", | |
type=optional_int, | |
default=5, | |
help="number of beams in beam search, only applicable when temperature is zero", | |
) | |
parser.add_argument( | |
"--patience", | |
type=float, | |
default=None, | |
help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search", | |
) | |
parser.add_argument( | |
"--length_penalty", | |
type=float, | |
default=None, | |
help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default", | |
) | |
parser.add_argument( | |
"--suppress_tokens", | |
type=str, | |
default="-1", | |
help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations", | |
) | |
parser.add_argument( | |
"--initial_prompt", | |
type=str, | |
default=None, | |
help="optional text to provide as a prompt for the first window.", | |
) | |
parser.add_argument( | |
"--condition_on_previous_text", | |
type=str2bool, | |
default=True, | |
help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop", | |
) | |
parser.add_argument( | |
"--fp16", | |
type=str2bool, | |
default=True, | |
help="whether to perform inference in fp16; True by default", | |
) | |
parser.add_argument( | |
"--temperature_increment_on_fallback", | |
type=optional_float, | |
default=0.2, | |
help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below", | |
) | |
parser.add_argument( | |
"--compression_ratio_threshold", | |
type=optional_float, | |
default=2.4, | |
help="if the gzip compression ratio is higher than this value, treat the decoding as failed", | |
) | |
parser.add_argument( | |
"--logprob_threshold", | |
type=optional_float, | |
default=-1.0, | |
help="if the average log probability is lower than this value, treat the decoding as failed", | |
) | |
parser.add_argument( | |
"--no_speech_threshold", | |
type=optional_float, | |
default=0.6, | |
help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence", | |
) | |
parser.add_argument( | |
"--threads", | |
type=optional_int, | |
default=0, | |
help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS", | |
) | |
args = parser.parse_args().__dict__ | |
model_name: str = args.pop("model") | |
model_dir: str = args.pop("model_dir") | |
output_dir: str = args.pop("output_dir") | |
device: str = args.pop("device") | |
os.makedirs(output_dir, exist_ok=True) | |
if model_name.endswith(".en") and args["language"] not in {"en", "English"}: | |
if args["language"] is not None: | |
warnings.warn( | |
f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead." | |
) | |
args["language"] = "en" | |
temperature = args.pop("temperature") | |
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback") | |
if temperature_increment_on_fallback is not None: | |
temperature = tuple( | |
np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback) | |
) | |
else: | |
temperature = [temperature] | |
threads = args.pop("threads") | |
if threads > 0: | |
torch.set_num_threads(threads) | |
from . import load_model | |
model = load_model(model_name, device=device, download_root=model_dir) | |
for audio_path in args.pop("audio"): | |
result = transcribe(model, audio_path, temperature=temperature, **args) | |
audio_basename = os.path.basename(audio_path) | |
# save TXT | |
with open( | |
os.path.join(output_dir, audio_basename + ".txt"), "w", encoding="utf-8" | |
) as txt: | |
write_txt(result["segments"], file=txt) | |
# save VTT | |
with open( | |
os.path.join(output_dir, audio_basename + ".vtt"), "w", encoding="utf-8" | |
) as vtt: | |
write_vtt(result["segments"], file=vtt) | |
# save SRT | |
with open( | |
os.path.join(output_dir, audio_basename + ".srt"), "w", encoding="utf-8" | |
) as srt: | |
write_srt(result["segments"], file=srt) | |
if __name__ == "__main__": | |
cli() | |