Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import random | |
import os | |
import json | |
import torchaudio | |
from tqdm import tqdm | |
from glob import glob | |
from collections import defaultdict | |
from utils.util import has_existed | |
from utils.audio_slicer import split_utterances_from_audio | |
from preprocessors import GOLDEN_TEST_SAMPLES | |
def _split_utts(): | |
raw_dir = "/mnt/chongqinggeminiceph1fs/geminicephfs/wx-mm-spr-xxxx/xueyaozhang/dataset/ๆ็/cocoeval/raw" | |
output_root = "/mnt/chongqinggeminiceph1fs/geminicephfs/wx-mm-spr-xxxx/xueyaozhang/dataset/ๆ็/cocoeval/utterances" | |
if os.path.exists(output_root): | |
os.system("rm -rf {}".format(output_root)) | |
vocal_files = glob(os.path.join(raw_dir, "*/vocal.wav")) | |
for vocal_f in tqdm(vocal_files): | |
song_name = vocal_f.split("/")[-2] | |
output_dir = os.path.join(output_root, song_name) | |
os.makedirs(output_dir, exist_ok=True) | |
split_utterances_from_audio(vocal_f, output_dir, min_interval=300) | |
def cocoeval_statistics(data_dir): | |
song2utts = defaultdict(list) | |
song_infos = glob(data_dir + "/*") | |
for song in song_infos: | |
song_name = song.split("/")[-1] | |
utts = glob(song + "/*.wav") | |
for utt in utts: | |
uid = utt.split("/")[-1].split(".")[0] | |
song2utts[song_name].append(uid) | |
print("Cocoeval: {} songs".format(len(song_infos))) | |
return song2utts | |
def main(output_path, dataset_path): | |
print("-" * 10) | |
print("Preparing datasets for Cocoeval...\n") | |
save_dir = os.path.join(output_path, "cocoeval") | |
test_output_file = os.path.join(save_dir, "test.json") | |
if has_existed(test_output_file): | |
return | |
# Load | |
song2utts = cocoeval_statistics(dataset_path) | |
train, test = [], [] | |
train_index_count, test_index_count = 0, 0 | |
train_total_duration, test_total_duration = 0.0, 0.0 | |
for song_name, uids in tqdm(song2utts.items()): | |
for chosen_uid in uids: | |
res = { | |
"Dataset": "cocoeval", | |
"Singer": "TBD", | |
"Song": song_name, | |
"Uid": "{}_{}".format(song_name, chosen_uid), | |
} | |
res["Path"] = "{}/{}.wav".format(song_name, chosen_uid) | |
res["Path"] = os.path.join(dataset_path, res["Path"]) | |
assert os.path.exists(res["Path"]) | |
waveform, sample_rate = torchaudio.load(res["Path"]) | |
duration = waveform.size(-1) / sample_rate | |
res["Duration"] = duration | |
res["index"] = test_index_count | |
test_total_duration += duration | |
test.append(res) | |
test_index_count += 1 | |
print("#Train = {}, #Test = {}".format(len(train), len(test))) | |
print( | |
"#Train hours= {}, #Test hours= {}".format( | |
train_total_duration / 3600, test_total_duration / 3600 | |
) | |
) | |
# Save | |
os.makedirs(save_dir, exist_ok=True) | |
with open(test_output_file, "w") as f: | |
json.dump(test, f, indent=4, ensure_ascii=False) | |