File size: 6,564 Bytes
0883aa1
65cdab5
 
 
 
 
 
 
80293de
65cdab5
 
 
9c3d630
65cdab5
 
 
 
 
 
df2accb
65cdab5
 
 
 
 
 
 
80293de
65cdab5
 
 
 
9c3d630
65cdab5
 
 
 
 
9c3d630
65cdab5
 
 
 
 
9c3d630
65cdab5
 
 
 
 
 
 
9c3d630
65cdab5
 
 
 
80293de
 
 
 
 
65cdab5
 
 
 
 
 
80293de
9c3d630
a4093de
80293de
 
 
 
 
 
 
 
 
a4093de
80293de
65cdab5
 
 
 
 
 
80293de
 
 
 
 
 
 
65cdab5
 
 
9c3d630
65cdab5
 
 
 
 
 
 
4fd0739
 
65cdab5
 
80293de
65cdab5
 
 
 
 
 
 
106c893
65cdab5
 
 
 
 
 
106c893
65cdab5
 
 
 
 
 
 
106c893
65cdab5
 
 
 
106c893
65cdab5
106c893
 
65cdab5
 
4fd0739
65cdab5
a4093de
106c893
 
65cdab5
9c3d630
4fd0739
65cdab5
 
9c3d630
4fd0739
65cdab5
 
 
4fd0739
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL, KDPM2AncestralDiscreteScheduler
from huggingface_hub import hf_hub_download
import spaces
from PIL import Image
import requests
from translatepy import Translator
import random

translator = Translator()

# ์ƒ์ˆ˜ ์ •์˜
model = "Corcelio/mobius"
vae_model = "madebyollin/sdxl-vae-fp16-fix"

CSS = """
.gradio-container {
  max-width: 690px !important;
}
footer {
    visibility: hidden;
}
"""

JS = """function () {
  gradioURL = window.location.href
  if (!gradioURL.endsWith('?__theme=dark')) {
    window.location.replace(gradioURL + '?__theme=dark');
  }
}"""

# VAE ์ปดํฌ๋„ŒํŠธ ๋กœ๋“œ
vae = AutoencoderKL.from_pretrained(
    vae_model, 
    torch_dtype=torch.float16
)

# GPU ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ ๋ชจ๋ธ ๋ฐ ์Šค์ผ€์ค„๋Ÿฌ ์ดˆ๊ธฐํ™”
if torch.cuda.is_available():
    pipe = StableDiffusionXLPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16).to("cuda")

pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)

# ํ•จ์ˆ˜ ์ •์˜
@spaces.GPU()
def generate_image(
    prompt,
    negative="low quality",
    width=1024,
    height=1024,
    scale=1.5,
    steps=30):
    
    prompt = str(translator.translate(prompt, 'English'))

    print(f'prompt:{prompt}')

    generator1 = torch.manual_seed(random.randint(0, 10000))
    generator2 = torch.manual_seed(random.randint(0, 10000))

    images1 = pipe(
        prompt, 
        negative_prompt=negative, 
        width=width,
        height=height,
        guidance_scale=scale,
        num_inference_steps=steps,
        generator=generator1
    ).images

    images2 = pipe(
        prompt, 
        negative_prompt=negative, 
        width=width,
        height=height,
        guidance_scale=scale,
        num_inference_steps=steps,
        generator=generator2
    ).images

    return images1[0], images2[0]  # ๋‘ ์ด๋ฏธ์ง€๋ฅผ ๋ฐ˜ํ™˜


examples = [
    "์•„๋ฆ„๋‹ค์šด 20์„ธ ํ•œ๊ตญ ์—ฌ์ž ๋ชจ๋ธ, 'ํ•œ๊ตญ ์—ฌ์ž๊ฐ€์ˆ˜ ์•„์ด์œ  ๋‹ฎ์€ ์–ผ๊ตด', ๊ฒ€์€์ƒ‰ ์งง์€ ๋‹จ๋ฐœ๋จธ๋ฆฌ, C์ปต ์‚ฌ์ด์ฆˆ์˜ ํฐ ๊ฐ€์Šด, ํฐ ๊ณจ๋ฐ˜, ๊ฐ€์ˆ˜ ์œ ๋‹ˆํผ, ๋ฐฐ๊ฒฝ ํฐ์ƒ‰, ์Šค๋งˆ์ผ ํ‘œ์ •, ๋ชจ๋ธ ํฌ์ฆˆ, ์ •๋ฉด ์‘์‹œ, ์ „์‹  ๋…ธ์ถœ, ์ดˆ๊ณ ํ•ด์ƒ๋„ ์‚ฌ์ง„",
    "์•„๋ฆ„๋‹ค์šด 20์„ธ ์˜๊ตญ ์—ฌ์ž ๋ชจ๋ธ, '์— ๋งˆ์™“์Šจ ๋‹ฎ์€ ์–ผ๊ตด', ๊ธˆ๋ฐœ ์งง์€ ๋‹จ๋ฐœ๋จธ๋ฆฌ, ์ด๋ธŒ๋‹ ๋“œ๋ ˆ์Šค, ๋ฐฐ๊ฒฝ ์‹œ์ƒ์‹, ์Šค๋งˆ์ผ ํ‘œ์ •, ๋ชจ๋ธ ํฌ์ฆˆ, ์ •๋ฉด ์‘์‹œ, ์ „์‹  ๋…ธ์ถœ, ์ดˆ๊ณ ํ•ด์ƒ๋„ ์‚ฌ์ง„",
    "์•„๋ฆ„๋‹ค์šด 20์„ธ ํ•œ๊ตญ ์—ฌ์ž ๋ชจ๋ธ, 'ํ•œ๊ตญ ์—ฌ์ž ์•„์ด๋Œ ๋‹ฎ์€ ์–ผ๊ตด', ๊ฒ€์€์ƒ‰ ์งง์€ ๋‹จ๋ฐœ๋จธ๋ฆฌ, ๋น„ํ‚ค๋‹ˆ ์ˆ˜์˜๋ณต, ๋ฐฐ๊ฒฝ ์ˆ˜์˜์žฅ, ์Šค๋งˆ์ผ ํ‘œ์ •, ๋ชจ๋ธ ํฌ์ฆˆ, ์ •๋ฉด ์‘์‹œ, ์ „์‹  ๋…ธ์ถœ, ์ดˆ๊ณ ํ•ด์ƒ๋„ ์‚ฌ์ง„",
    "์•„๋ฆ„๋‹ค์šด 23์„ธ ์ค‘๊ตญ๊ตญ ์—ฌ์ž ๋ชจ๋ธ, ๊ฐˆ์ƒ‰ ๊ธด ์ƒ๋จธ๋ฆฌ, C์ปต ์‚ฌ์ด์ฆˆ์˜ ํฐ ๊ฐ€์Šด, ๋ฐฐ๊ฒฝ ์ŠคํŠœ๋””์˜ค, ์ง„์ง€ํ•œ ํ‘œ์ •, ์˜คํ”ผ์Šค ์œ ๋‹ˆํผ, ๋ชจ๋ธ ํฌ์ฆˆ, ์ •๋ฉด ์‘์‹œ, ์ดˆ๊ณ ํ•ด์ƒ๋„ ์‚ฌ์ง„",
    "์•„๋ฆ„๋‹ค์šด 18์„ธ ์ผ๋ณธ ์—ฌ์ž ๋ชจ๋ธ, ๊ฒ€์€์ƒ‰ ์งง์€ ๋‹จ๋ฐœ๋จธ๋ฆฌ, ์Šค๋งˆ์ผ ํ‘œ์ •, ๊ต๋ณต ์œ ๋‹ˆํผ, ๋ฐฐ๊ฒฝ ํ•™๊ต ๊ต์‹ค, ๋ชจ๋ธ ํฌ์ฆˆ, ์ •๋ฉด ์‘์‹œ, ์ดˆ๊ณ ํ•ด์ƒ๋„ ์‚ฌ์ง„",
    "์•„๋ฆ„๋‹ค์šด 20์„ธ ๋ธŒ๋ผ์งˆ ์—ฌ์ž ๋ชจ๋ธ, ๊ฒ€์€์ƒ‰ ์งง์€ ๋‹จ๋ฐœ๋จธ๋ฆฌ, C์ปต ์‚ฌ์ด์ฆˆ์˜ ํฐ ๊ฐ€์Šด, ํฐ ๊ณจ๋ฐ˜, ๊ฐ„ํ˜ธ์‚ฌ ์œ ๋‹ˆํผ, ๋ฐฐ๊ฒฝ ํฐ์ƒ‰, ์Šค๋งˆ์ผ ํ‘œ์ •, ๋ชจ๋ธ ํฌ์ฆˆ, ์ •๋ฉด ์‘์‹œ, ์ „์‹  ๋…ธ์ถœ, ์ดˆ๊ณ ํ•ด์ƒ๋„ ์‚ฌ์ง„",
    "์•„๋ฆ„๋‹ค์šด 20์„ธ ์Šค์›จ๋ด ์—ฌ์ž ๋ชจ๋ธ, ๊ธˆ๋ฐœ ๊ธด ์ƒ๋จธ๋ฆฌ, C์ปต ์‚ฌ์ด์ฆˆ์˜ ํฐ ๊ฐ€์Šด, ํฐ ๊ณจ๋ฐ˜, ๋น„ํ‚ค๋‹ˆ ์ˆ˜์˜๋ณต, ๋ฐฐ๊ฒฝ ํ•ด๋ณ€๊ฐ€, ์Šค๋งˆ์ผ ํ‘œ์ •, ๋ชจ๋ธ ํฌ์ฆˆ, ์ •๋ฉด ์‘์‹œ, ์ดˆ๊ณ ํ•ด์ƒ๋„ ์‚ฌ์ง„",
    "์•„๋ฆ„๋‹ค์šด 18์„ธ ๋Ÿฌ์‹œ์•„ ์—ฌ์ž ๋ชจ๋ธ, ๊ธˆ๋ฐœ ์งง์€ ๋‹จ๋ฐœ๋จธ๋ฆฌ, C์ปต ์‚ฌ์ด์ฆˆ์˜ ํฐ ๊ฐ€์Šด, ํฐ ๊ณจ๋ฐ˜, ๋น„ํ‚ค๋‹ˆ ์ˆ˜์˜๋ณต, ๋ฐฐ๊ฒฝ ์ˆ˜์˜์žฅ, ์—„์ˆ™ํ•œ ํ‘œ์ •, ๋ชจ๋ธ ํฌ์ฆˆ, ์ •๋ฉด ์‘์‹œ, ์ดˆ๊ณ ํ•ด์ƒ๋„ ์‚ฌ์ง„",
    "์•„๋ฆ„๋‹ค์šด 20์„ธ ํ”„๋ž‘์Šค ์—ฌ์ž ๋ชจ๋ธ, ๊ฐˆ์ƒ‰ ์งง์€ ๋‹จ๋ฐœ๋จธ๋ฆฌ, C์ปต ์‚ฌ์ด์ฆˆ์˜ ํฐ ๊ฐ€์Šด, ํฐ ๊ณจ๋ฐ˜, ๋น„์ฆˆ๋‹ˆ์Šค ์ •์žฅ, ๋ฐฐ๊ฒฝ ์‚ฌ๋ฌด์‹ค, ํฌ๊ฒŒ ์›ƒ๋Š” ํ‘œ์ •, ๋ชจ๋ธ ํฌ์ฆˆ, ์ •๋ฉด ์‘์‹œ, ์ดˆ๊ณ ํ•ด์ƒ๋„ ์‚ฌ์ง„",
    "์•„๋ฆ„๋‹ค์šด 16์„ธ ์šฐํฌ๋ผ์ด๋‚˜ ์—ฌ์ž ๋ชจ๋ธ, ๊ฐˆ์ƒ‰ ๊ธด ์ƒ๋จธ๋ฆฌ, C์ปต ์‚ฌ์ด์ฆˆ์˜ ํฐ ๊ฐ€์Šด, ํฐ ๊ณจ๋ฐ˜, ์˜คํ”ผ์Šค ์œ ๋‹ˆํผ, ์„น์Šค ํฌ์ฆˆ, ๋ฐฐ๊ฒฝ ํ˜ธํ…”, ํ–‰๋ณตํ•œ ํ‘œ์ •, ์ •๋ฉด ์‘์‹œ, ์ดˆ๊ณ ํ•ด์ƒ๋„ ์‚ฌ์ง„"
]


# Gradio ์ธํ„ฐํŽ˜์ด์Šค

with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
    gr.HTML("<h1><center>๋‚˜๋งŒ์˜ ๋ชจ๋ธ ์บ๋ฆญํ„ฐ ์ƒ์„ฑ</center></h1>")
    with gr.Group():
        with gr.Row():
            prompt = gr.Textbox(label='Enter Your Prompt', value="best quality, HD, aesthetic", scale=6)
            submit = gr.Button(scale=1, variant='primary')
    img1 = gr.Image(label='Generated Image 1')
    img2 = gr.Image(label='Generated Image 2')
    with gr.Accordion("Advanced Options", open=False):
        with gr.Row():
            negative = gr.Textbox(label="Negative prompt", value="low quality, low quality, (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)")
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=1280,
                step=8,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=1280,
                step=8,
                value=1024,
            )
        with gr.Row():
            scale = gr.Slider(
                label="Guidance",
                minimum=3.5,
                maximum=7,
                step=0.1,
                value=7,
            )
            steps = gr.Slider(
                label="Steps",
                minimum=1,
                maximum=50,
                step=1,
                value=50,
            )
    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[img1, img2],
        fn=generate_image,
        cache_examples=False,  # ์บ์‹œ ์ƒ์„ฑํ•˜์ง€ ์•Š๋„๋ก ์„ค์ •
    )

    prompt.submit(fn=generate_image,
                 inputs=[prompt, negative, width, height, scale, steps],
                 outputs=[img1, img2],
                 )
    submit.click(fn=generate_image,
                 inputs=[prompt, negative, width, height, scale, steps],
                 outputs=[img1, img2],
                 )
    
#demo.queue().launch()
demo.queue().launch(auth=("gini", "pick"))