Spaces:
Sleeping
Sleeping
File size: 2,930 Bytes
149b1cf 76a04a0 149b1cf 23536a2 6ee44e1 149b1cf 76a04a0 149b1cf 76a04a0 4690606 ed0f954 1c69950 6ee44e1 1c69950 6ee44e1 ed0f954 149b1cf 76a04a0 0d35832 b4c6995 a784624 aaa4875 7db631f 5b0f68e 149b1cf 76a04a0 149b1cf 76a04a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("unsloth/Llama-3.2-1B-Instruct")
client = InferenceClient( model="https://kjynd32snp9r6qb7.us-east-1.aws.endpoints.huggingface.cloud")
def respond(
message,
history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
):
system_message = "You are a Dietician Assistant specializing in providing general guidance on diet, "
"nutrition, and healthy eating habits. Answer questions thoroughly with scientifically "
"backed advice, practical tips, and easy-to-understand explanations. Keep in mind that "
"your role is to assist, not replace a registered dietitian, so kindly remind users to "
"consult a professional for personalized advice when necessary."
max_tokens = 512
temperature = 0.7
top_p = 0.95
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
stop=["<|im_end|><|im_end|>", "<|im_end|>"],
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
if not token:
break
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
fn=respond,
#title="Hi there! I'm your Dietician Assistant, here to help you with general advice on diet, nutrition, and healthy eating habits. Let's explore your questions.",
title="Your Personal Dietician Assistant: Expert Guidance on Healthy Eating and Nutrition",
examples=["What are some healthy snacks I can eat if I feel hungry between meals?",
"How can I improve my gut health through diet?",
"Can you recommend some high-protein vegetarian meals?"]
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
)
if __name__ == "__main__":
demo.launch() |