Spaces:
Running
Running
File size: 8,305 Bytes
db1f0f8 d64a508 db1f0f8 e3bf489 db1f0f8 41d4352 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 db1f0f8 e3bf489 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
---
title: "Activation functions"
notebook-links: false
crossref:
lof-title: "List of Figures"
number-sections: false
format:
html: default
---
When choosing an activation function, consider the following:
- **Non-saturation:** Avoid activations that saturate (e.g., sigmoid, tanh) to prevent vanishing gradients.
- **Computational efficiency:** Choose activations that are computationally efficient (e.g., ReLU, Swish) for large models or real-time applications.
- **Smoothness:** Smooth activations (e.g., GELU, Mish) can help with optimization and convergence.
- **Domain knowledge:** Select activations based on the problem domain and desired output (e.g., softmax for multi-class classification).
- **Experimentation:** Try different activations and evaluate their performance on your specific task.
[But what is a neural network?](https://youtu.be/aircAruvnKk?si=64sscTHzYeZ9x-5L)
[Slideshow](activations_slideshow.qmd)
{{< embed ActivationFunctions.ipynb#fig-overview >}}
## Sigmoid {#sec-sigmoid}
**Strengths:** Maps any real-valued number to a value between 0 and 1, making it suitable for binary classification problems.
**Weaknesses:** Saturates (i.e., output values approach 0 or 1) for large inputs, leading to vanishing gradients during backpropagation.
**Usage:** Binary classification, logistic regression.
::: columns
::: {.column width="50%"}
$$
\sigma(x) = \frac{1}{1 + e^{-x}}
$$
``` python
def sigmoid(x):
return 1 / (1 + np.exp(-x))
```
:::
::: {.column width="50%"}
{{< embed ActivationFunctions.ipynb#fig-sigmoid >}}
:::
:::
## Hyperbolic Tangent (Tanh) {#sec-tanh}
**Strengths:** Similar to sigmoid, but maps to (-1, 1), which can be beneficial for some models.
**Weaknesses:** Also saturates, leading to vanishing gradients.
**Usage:** Similar to sigmoid, but with a larger output range.
::: columns
::: {.column width="50%"}
$$
\tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
$$
``` python
def tanh(x):
return np.tanh(x)
```
:::
::: {.column width="50%"}
{{< embed ActivationFunctions.ipynb#fig-tanh >}}
:::
:::
## Rectified Linear Unit (ReLU)
**Strengths:** Computationally efficient, non-saturating, and easy to compute.
**Weaknesses:** Not differentiable at x=0, which can cause issues during optimization.
**Usage:** Default activation function in many deep learning frameworks, suitable for most neural networks.
::: columns
::: {.column width="50%"}
$$
\text{ReLU}(x) = \max(0, x)
$$
``` python
def relu(x):
return np.maximum(0, x)
```
:::
::: {.column width="50%"}
{{< embed ActivationFunctions.ipynb#fig-relu >}}
:::
:::
## Leaky ReLU
**Strengths:** Similar to ReLU, but allows a small fraction of the input to pass through, helping with dying neurons.
**Weaknesses:** Still non-differentiable at x=0.
**Usage:** Alternative to ReLU, especially when dealing with dying neurons.
::: columns
::: {.column width="50%"}
$$
\text{Leaky ReLU}(x) =
\begin{cases}
x & \text{if } x > 0 \\
\alpha x & \text{if } x \leq 0
\end{cases}
$$
``` python
def leaky_relu(x, alpha=0.01):
# where α is a small constant (e.g., 0.01)
return np.where(x > 0, x, x * alpha)
```
:::
::: {.column width="50%"}
{{< embed ActivationFunctions.ipynb#fig-leaky_relu >}}
:::
:::
## Swish
**Formula:**
where g(x) is a learned function (e.g., sigmoid or ReLU)
**Strengths:** Self-gated, adaptive, and non-saturating.
**Weaknesses:** Computationally expensive, requires additional learnable parameters.
**Usage:** Can be used in place of ReLU or other activations, but may not always outperform them.
::: columns
::: {.column width="50%"}
$$
\text{Swish}(x) = x \cdot \sigma(x)
$$
``` python
def swish(x):
return x * sigmoid(x)
```
See also: [sigmoid](#sec-sigmoid)
:::
::: {.column width="50%"}
{{< embed ActivationFunctions.ipynb#fig-swish >}}
:::
:::
## Mish
**Strengths:** Non-saturating, smooth, and computationally efficient.
**Weaknesses:** Not as well-studied as ReLU or other activations.
**Usage:** Alternative to ReLU, especially in computer vision tasks.
::: columns
::: {.column width="50%"}
$$
\text{Mish}(x) = x \cdot \tanh(\text{Softplus}(x))
$$
``` python
def mish(x):
return x * np.tanh(softplus(x))
```
:::
::: {.column width="50%"}
{{< embed ActivationFunctions.ipynb#fig-mish >}}
:::
:::
See also: [softplus](#softplus) [tanh](#sec-tanh)
## Softmax
**Strengths:** Normalizes output to ensure probabilities sum to 1, making it suitable for multi-class classification.
**Weaknesses:** Only suitable for output layers with multiple classes.
**Usage:** Output layer activation for multi-class classification problems.
::: columns
::: {.column width="50%"}
$$
\text{Softmax}(x_i) = \frac{e^{x_i}}{\sum_{k=1}^{K} e^{x_k}}
$$
``` python
def softmax(x):
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
```
:::
::: {.column width="50%"}
{{< embed ActivationFunctions.ipynb#fig-softmax >}}
:::
:::
## Softsign
**Strengths:** Similar to sigmoid, but with a more gradual slope.
**Weaknesses:** Not commonly used, may not provide significant benefits over sigmoid or tanh.
**Usage:** Alternative to sigmoid or tanh in certain situations.
::: columns
::: {.column width="50%"}
$$
\text{Softsign}(x) = \frac{x}{1 + |x|}
$$
``` python
def softsign(x):
return x / (1 + np.abs(x))
```
:::
::: {.column width="50%"}
{{< embed ActivationFunctions.ipynb#fig-softsign >}}
:::
:::
## SoftPlus {#softplus}
**Strengths:** Smooth, continuous, and non-saturating.
**Weaknesses:** Not commonly used, may not outperform other activations.
**Usage:** Experimental or niche applications.
::: columns
::: {.column width="50%"}
$$
\text{Softplus}(x) = \log(1 + e^x)
$$
``` python
def softplus(x):
return np.log1p(np.exp(x))
```
:::
::: {.column width="50%"}
{{< embed ActivationFunctions.ipynb#fig-softplus >}}
:::
:::
## ArcTan
**Strengths:** Non-saturating, smooth, and continuous.
**Weaknesses:** Not commonly used, may not outperform other activations.
**Usage:** Experimental or niche applications.
::: columns
::: {.column width="50%"}
$$
arctan(x) = arctan(x)
$$
``` python
def arctan(x):
return np.arctan(x)
```
:::
::: {.column width="50%"}
{{< embed ActivationFunctions.ipynb#fig-arctan >}}
:::
:::
## Gaussian Error Linear Unit (GELU)
**Strengths:** Non-saturating, smooth, and computationally efficient.
**Weaknesses:** Not as well-studied as ReLU or other activations.
**Usage:** Alternative to ReLU, especially in Bayesian neural networks.
::: columns
::: {.column width="50%"}
$$
\text{GELU}(x) = x \cdot \Phi(x)
$$
``` python
def gelu(x):
return 0.5 * x
* (1 + np.tanh(np.sqrt(2 / np.pi)
* (x + 0.044715 * np.power(x, 3))))
```
:::
::: {.column width="50%"}
{{< embed ActivationFunctions.ipynb#fig-gelu >}}
:::
:::
See also: [tanh](#sec-tanh)
## Silu (SiLU)
**Strengths:** Non-saturating, smooth, and computationally efficient.
**Weaknesses:** Not as well-studied as ReLU or other activations.
**Usage:** Alternative to ReLU, especially in computer vision tasks.
::: columns
::: {.column width="50%"}
$$
silu(x) = x * sigmoid(x)
$$
``` python
def silu(x):
return x / (1 + np.exp(-x))
```
:::
::: {.column width="50%"}
{{< embed ActivationFunctions.ipynb#fig-silu >}}
:::
:::
## GELU Approximation (GELU Approx.)
$$
f(x) ≈ 0.5 * x * (1 + tanh(√(2/π) * (x + 0.044715 * x^3)))
$$
**Strengths:** Fast, non-saturating, and smooth.
**Weaknesses:** Approximation, not exactly equal to GELU.
**Usage:** Alternative to GELU, especially when computational efficiency is crucial.
## SELU (Scaled Exponential Linear Unit)
$$
f(x) = \lambda
\begin{cases}
x & x > 0 \\
\alpha e^x - \alpha & x \leq 0
\end{cases}
$$
**Strengths:** Self-normalizing, non-saturating, and computationally efficient.
**Weaknesses:** Requires careful initialization and α tuning.
**Usage:** Alternative to ReLU, especially in deep neural networks.
|