File size: 3,099 Bytes
d64a508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from sklearn.metrics import accuracy_score, mean_squared_error\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.datasets import make_classification, make_regression\n",
    "from sklearn.linear_model import LogisticRegression, LinearRegression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Accuracy: 0.90\n"
     ]
    }
   ],
   "source": [
    "\n",
    "# Example of using Accuracy in a classification task\n",
    "# Creating a synthetic dataset for a binary classification\n",
    "X_class, y_class = make_classification(n_samples=1000, n_features=2, n_redundant=0, n_clusters_per_class=1, weights=[0.5], flip_y=0, random_state=1)\n",
    "\n",
    "# Splitting dataset into training and testing sets\n",
    "X_train_class, X_test_class, y_train_class, y_test_class = train_test_split(X_class, y_class, test_size=0.2, random_state=42)\n",
    "\n",
    "# Training a logistic regression classifier\n",
    "classifier = LogisticRegression()\n",
    "lr = classifier.fit(X_train_class, y_train_class)\n",
    "\n",
    "# Predicting the test set results\n",
    "y_pred_class = classifier.predict(X_test_class)\n",
    "\n",
    "# Calculating accuracy\n",
    "accuracy = accuracy_score(y_test_class, y_pred_class)\n",
    "print(f\"Accuracy: {accuracy:.2f}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mean Squared Error: 0.01\n"
     ]
    }
   ],
   "source": [
    "\n",
    "# Example of using Mean Squared Error in a regression task\n",
    "# Creating a synthetic dataset for regression\n",
    "X_reg, y_reg = make_regression(n_samples=100, n_features=1, noise=0.1, random_state=1)\n",
    "\n",
    "# Splitting dataset into training and testing sets\n",
    "X_train_reg, X_test_reg, y_train_reg, y_test_reg = train_test_split(X_reg, y_reg, test_size=0.2, random_state=42)\n",
    "\n",
    "# Training a linear regression model\n",
    "regressor = LinearRegression()\n",
    "regressor.fit(X_train_reg, y_train_reg)\n",
    "\n",
    "# Predicting the test set results\n",
    "y_pred_reg = regressor.predict(X_test_reg)\n",
    "\n",
    "# Calculating mean squared error\n",
    "mse = mean_squared_error(y_test_reg, y_pred_reg)\n",
    "print(f\"Mean Squared Error: {mse:.2f}\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}