Spaces:
Running
Running
File size: 13,941 Bytes
d64a508 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
---
title: ""
---
# Introduction
```{python}
#| echo: false
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import torch
def quantization_error(tensor, dequantized_tensor):
return (dequantized_tensor - tensor).abs().square().mean()
def plot_quantization_errors(original_tensor, quantized_tensor, dequantized_tensor, dtype=torch.int8, n_bits=8):
"""
A method that plots 4 matrices, the original tensor, the quantized tensor,
the de-quantized tensor, and the error tensor in a 2x2 grid.
"""
# Create a figure of 4 plots arranged in 2 rows and 2 columns
fig, axes = plt.subplots(2, 2, figsize=(8, 4)) # Adjust the size as needed
# Flatten the axes array for easier indexing
axes = axes.flatten()
# Plot the original tensor
plot_matrix(original_tensor, axes[0], 'Original Tensor', cmap=ListedColormap(['white']))
# Get the quantization range and plot the quantized tensor
q_min, q_max = torch.iinfo(dtype).min, torch.iinfo(dtype).max
plot_matrix(quantized_tensor, axes[1], f'{n_bits}-bit Linear Quantized Tensor', vmin=q_min, vmax=q_max, cmap='coolwarm')
# Plot the de-quantized tensor
plot_matrix(dequantized_tensor, axes[2], 'Dequantized Tensor', cmap='coolwarm')
# Calculate and plot quantization errors
q_error_tensor = abs(original_tensor - dequantized_tensor)
plot_matrix(q_error_tensor, axes[3], 'Quantization Error Tensor', cmap=ListedColormap(['white']))
# Adjust layout to prevent overlap
fig.tight_layout()
plt.show()
def plot_matrix(tensor, ax, title, vmin=0, vmax=1, cmap=None):
"""
Plot a heatmap of tensors using seaborn
"""
sns.heatmap(tensor.cpu().numpy(), ax=ax, vmin=vmin, vmax=vmax, cmap=cmap, annot=True, fmt=".2f", cbar=False)
ax.set_title(title)
ax.set_yticklabels([])
ax.set_xticklabels([])
def linear_q_with_scale_and_zero_point(tensor, scale, zero_point, dtype = torch.int8):
scaled_and_shifted_tensor = tensor / scale + zero_point
rounded_tensor = torch.round(scaled_and_shifted_tensor)
q_min = torch.iinfo(dtype).min
q_max = torch.iinfo(dtype).max
q_tensor = rounded_tensor.clamp(q_min,q_max).to(dtype)
return q_tensor
```
```{python}
#| echo: false
# Set the random seed for reproducibility
torch.manual_seed(41)
# Define the desired range
a = -1024 # Lower bound of the range
b = 1024 # Upper bound of the range
# Create a 6x6 matrix with random numbers in the range [a, b]
test_tensor = a + (b - a) * torch.rand(6, 6)
test_tensor
```
# Mastering Tensor Quantization in PyTorch
Quantization is a powerful technique used to reduce the memory footprint of neural networks, making them faster and more efficient, particularly on devices with limited computational power like mobile phones and embedded systems. This guide dives deep into how quantization works using PyTorch and provides a step-by-step approach to quantize tensors effectively.
### Implementing Asymmetric Quantization in PyTorch
Quantization in the context of deep learning involves approximating a high-precision tensor (like a floating point tensor) with a lower-precision format (like integers). This is crucial for deploying models on hardware that supports or performs better with lower precision arithmetic.
Let's begin by understanding the fundamental components needed for quantization—scale and zero point. The `scale` is a factor that adjusts the tensor's range to match the dynamic range of the target data type (e.g., `int8`), and the `zero point` is used to align the tensor around zero.
### Determining Scale and Zero Point
First, you need the minimum and maximum values that your chosen data type can hold. Here’s how you can find these for the `int8` type in PyTorch:
```{python}
import torch
q_min = torch.iinfo(torch.int8).min
q_max = torch.iinfo(torch.int8).max
print(f"Min: {q_min}, Max: {q_max}")
```
For our tensor `test_tensor`, find the minimum and maximum values:
```{python}
r_min = test_tensor.min().item()
r_max = test_tensor.max().item()
print(f"Min: {r_min}, Max: {r_max}")
```
With these values, you can compute the `scale` and `zero_point`:
```{python}
scale = (r_max - r_min) / (q_max - q_min)
zero_point = q_min - (r_min / scale)
print(f"Scale: {scale}, Zero-Point: {zero_point}")
```
### Automating Quantization
To streamline the process, you can define a function `get_q_scale_and_zero_point` that automatically computes the `scale` and `zero_point`:
```{python}
def get_q_scale_and_zero_point(tensor, dtype=torch.int8):
r_min = tensor.min().item()
r_max = tensor.max().item()
q_min = torch.iinfo(dtype).min
q_max = torch.iinfo(dtype).max
scale = (r_max - r_min) / (q_max - q_min)
zero_point = q_min - (r_min / scale)
return scale, zero_point
```
### Applying Quantization and Dequantization
Now, let's quantize and dequantize a tensor using the derived scale and zero point. The quantization maps real values to integer values using the scale and zero point:
```{python}
def linear_quantization(tensor, dtype=torch.int8):
scale, zero_point = get_q_scale_and_zero_point(tensor, dtype=dtype)
quantized_tensor = linear_q_with_scale_and_zero_point(tensor, scale, zero_point, dtype=dtype)
return quantized_tensor, scale, zero_point
def linear_dequantization(quantized_tensor, scale, zero_point):
dequantized_tensor = scale * (quantized_tensor.float() - zero_point)
return dequantized_tensor
```
### Visualization of Quantization Effects
Finally, it’s insightful to visualize the effects of quantization:
```{python}
quantized_tensor, scale, zero_point = linear_quantization(test_tensor)
dequantized_tensor = linear_dequantization(quantized_tensor, scale, zero_point)
plot_quantization_errors(test_tensor, quantized_tensor, dequantized_tensor)
```
```{python}
# Calculate and print quantization error
error = quantization_error(test_tensor, dequantized_tensor)
print(f"Quantization Error: {error}")
```
## Implementing Symmetric Quantization in PyTorch
Quantization is a technique used to reduce model size and speed up inference by approximating floating point numbers with integers. Symmetric quantization is a specific type of quantization where the number range is symmetric around zero. This simplifies the quantization process as the zero point is fixed at zero, eliminating the need to compute or store it. Here, we explore how to implement symmetric quantization in PyTorch.
### Calculating the Scale for Symmetric Quantization
The scale factor in symmetric quantization is crucial as it defines the conversion ratio between the floating point values and their integer representations. The scale is computed based on the maximum absolute value in the tensor and the maximum value storable in the specified integer data type. Here's how you can calculate the scale:
```{python}
def get_q_scale_symmetric(tensor, dtype=torch.int8):
r_max = tensor.abs().max().item() # Get the maximum absolute value in the tensor
q_max = torch.iinfo(dtype).max # Get the maximum storable value for the dtype
# Return the scale
return r_max / q_max
```
### Testing the Scale Calculation
We'll test this function using a random 4x4 tensor:
```{python}
print(get_q_scale_symmetric(test_tensor))
```
### Performing Symmetric Quantization
Once the scale is determined, the tensor can be quantized. This involves converting the floating-point numbers to integers based on the scale. Here’s how to do it:
### Quantization Equation
The quantization equation transforms the original floating-point values into quantized integer values. This is achieved by scaling the original values down by the scale factor, then rounding them to the nearest integer, and finally adjusting by the zero-point:
$$
\text{Quantized Value} = \text{round}\left(\frac{\text{Original Value}}{\text{Scale}}\right) + \text{Zero-point}
$$
### Dequantization Equation
The dequantization equation reverses the quantization process to approximate the original floating-point values from the quantized integers. This involves subtracting the zero-point from the quantized value, and then scaling it up by the scale factor:
$$
\text{Dequantized Value} = (\text{Quantized Value} - \text{Zero-point}) \times \text{Scale}
$$
These equations are fundamental to understanding how data is compressed and decompressed in the process of quantization and dequantization, allowing for efficient storage and computation in neural network models.
```{python}
def linear_q_symmetric(tensor, dtype=torch.int8):
scale = get_q_scale_symmetric(tensor) # Calculate the scale
# Perform quantization with zero_point = 0 for symmetric mode
quantized_tensor = linear_q_with_scale_and_zero_point(tensor, scale=scale, zero_point=0, dtype=dtype)
return quantized_tensor, scale
quantized_tensor, scale = linear_q_symmetric(test_tensor)
```
### Dequantization and Error Visualization
Dequantization is the reverse process of quantization, converting integers back to floating-point numbers using the same scale and zero point. Here's how to dequantize and plot quantization errors:
```{python}
dequantized_tensor = linear_dequantization(quantized_tensor, scale, zero_point=0)
plot_quantization_errors(test_tensor, quantized_tensor, dequantized_tensor)
```
```{python}
error = quantization_error(test_tensor, dequantized_tensor)
print(f"Quantization Error: {error}")
```
### Understanding Per-Tensor Quantization
In per-tensor quantization, a single scale and zero point based on the entire tensor's range are used. This is particularly useful for tensors where values do not vary significantly in magnitude across different dimensions. It simplifies the quantization process by maintaining uniformity.
### Testing with a Sample Tensor
We'll quantize a predefined tensor to understand how per-tensor symmetric quantization is implemented:
```{python}
quantized_tensor, scale = linear_q_symmetric(test_tensor)
dequantized_tensor = linear_dequantization(quantized_tensor, scale, 0)
```
### Visualizing Quantization Errors
To assess the impact of quantization on tensor values, we'll visualize the errors between original and dequantized tensors:
```{python}
plot_quantization_errors(test_tensor, quantized_tensor, dequantized_tensor)
```
### Quantization Error Analysis
Quantization error is a critical metric to evaluate the loss of information due to quantization. It is calculated as the difference between original and dequantized values:
```{python}
# Calculate and print quantization error
error = quantization_error(test_tensor, dequantized_tensor)
print(f"Quantization Error: {error}")
```
## Understanding Per-channel Quantization
In per-channel quantization, each channel of a tensor (e.g., the weight tensor in convolutional layers) is treated as an independent unit for quantization. Here's a basic outline of the process:
1. **Determine Scale and Zero-point**: For each channel, calculate a scale and zero-point based on the range of data values present in that channel. This might involve finding the minimum and maximum values of each channel and then using these values to compute the scale and zero-point that map the floating-point numbers to integers.
2. **Quantization**: Apply the quantization formula to each channel using its respective scale and zero-point. This step converts the floating-point values to integers.
$$
\text{Quantized Value} = \text{round}\left(\frac{\text{Original Value}}{\text{Scale}}\right) + \text{Zero-point}
$$
3. **Storage and Computation**: The quantized values are stored and used for computations in the quantized model. The unique scales and zero-points for each channel are also stored for use during dequantization or inference.
4. **Dequantization**: To convert the quantized integers back to floating-point numbers (e.g., during inference), the inverse operation is performed using the per-channel scales and zero-points.
$$
\text{Dequantized Value} = (\text{Quantized Value} - \text{Zero-point}) \times \text{Scale}
$$
```{python}
def linear_q_symmetric_per_channel(r_tensor, dim, dtype=torch.int8):
output_dim = r_tensor.shape[dim]
# store the scales
scale = torch.zeros(output_dim)
for index in range(output_dim):
sub_tensor = r_tensor.select(dim, index)
scale[index] = get_q_scale_symmetric(sub_tensor, dtype=dtype)
# reshape the scale
scale_shape = [1] * r_tensor.dim()
scale_shape[dim] = -1
scale = scale.view(scale_shape)
quantized_tensor = linear_q_with_scale_and_zero_point(
r_tensor, scale=scale, zero_point=0, dtype=dtype)
return quantized_tensor, scale
```
### Scaled on Columns (Dim 0)
```{python}
quantized_tensor_0, scale_0 = linear_q_symmetric_per_channel(test_tensor, dim=0)
dequantized_tensor_0 = linear_dequantization(quantized_tensor_0, scale_0, 0)
plot_quantization_errors(
test_tensor, quantized_tensor_0, dequantized_tensor_0)
```
```{python}
print(f"""Quantization Error : {quantization_error(test_tensor, dequantized_tensor_0)}""")
```
### Scaled on Columns (Dim 1)
```{python}
quantized_tensor_1, scale_1 = linear_q_symmetric_per_channel(test_tensor, dim=1)
dequantized_tensor_1 = linear_dequantization(quantized_tensor_1, scale_1, 0)
plot_quantization_errors(
test_tensor, quantized_tensor_1, dequantized_tensor_1)
```
```{python}
print(f"""Quantization Error : {quantization_error(test_tensor, dequantized_tensor_1)}""")
```
|