external / app.py
seek007's picture
Update app.py
5c77412 verified
# -*- coding: utf-8 -*-
"""
Developed by Abdul S.
FA20-BCS-OO1 final app.ipynb
Automatically generated by Colab
"""
import pandas as pd
import numpy as np
import gradio as gr
from TweetNormalizer import normalizeTweet
import seaborn as sns
import matplotlib.pyplot as plt
from transformers import pipeline
# Set pandas display option to show only 2 decimal places
pd.set_option('display.float_format', '{:.2f}'.format)
pipe= pipeline(model="seek007/taskA-DeBERTa-large-1.0.0",tokenizer='seek007/taskA-DeBERTa-large-1.0.0')
# pipe = joblib.load('/content/drive/MyDrive/FYPpkl models/pipeA-wTok-0.0.1.pkl')
#
def predict(text=None , fil=None):
sentiment =None
df=None
fig=None
if text == None and fil == None:
return "Either enter text or upload .csv or .xlsx file.!" , df, fig
# Preprocess the text
preprocessed_text = normalizeTweet(text)
if fil:
if fil.name.endswith('.csv'):
df = pd.read_csv(fil.name, header=None , names=['tweet'], usecols=[0])
elif fil.name.endswith('.xlsx') or fil.name.endswith('.xls'):
df = pd.read_excel(fil.name, header=None, names=['tweet'], usecols=[0])
else:
raise ValueError("Unsupported file type. Please upload a CSV or Excel file.")
lst = list(df.tweet)
m =[normalizeTweet(i) for i in lst]
d = pd.DataFrame(pipe.predict(m))
df['label'] = d['label']
sarcastic_count = np.sum(df.label == 'sarcastic')
non_sarcastic_count = np.sum(df.label =='non_sarcastic')
labels = ['Sarcastic', 'Non-Sarcastic']
sizes = [sarcastic_count, non_sarcastic_count]
colors = ['gold', 'lightblue']
explode = (0.1, 0) # explode 1st slice
sns.set_style("whitegrid")
fig, ax = plt.subplots()
ax.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=140) #, colors=colors
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
plt.title('Sarcastic vs Non-Sarcastic Tweets')
if text == None:
sentiment = df['label'][0]
if text != "":
prediction = pipe.predict([preprocessed_text])[0]
print(prediction)
sentiment = "Sarcastic" if prediction['label'] == 'sarcastic' else "Non Sarcastic"
if fil == None:
df= pd.DataFrame([{'tweet':text, 'label':sentiment}])
return sentiment, df, fig
file_path =gr.File(label="Upload a File")
output = gr.Label(num_top_classes=2, label="Predicted Labels")
detector = gr.Interface(fn=predict, inputs=[gr.Text(label="Input"),file_path], outputs=[output, gr.DataFrame(headers =['Tweets', 'Labels'], wrap=True), gr.Plot(label="Sarcasm Predictor")], title="Sarcasm Predictor")
# demo.launch(debug=True)
# load classifier pipeline
pipe2 = pipeline(model="seek007/taskB-bertweet-base-trainer-1.0.0", tokenizer="seek007/taskB-bertweet-base-trainer-1.0.0")
# classifier
def classifyB(text=None , fil=None):
sentiment = None
df = None
fig = None
if text is None and fil is None:
return "Either enter text or upload .csv or .xlsx file.!" , df, fig
# Preprocess the text
preprocessed_text = normalizeTweet(text)
labels = ['sarcasm', 'irony','Staire', 'understatement','overstatement', 'rhetorical question']
if fil:
if fil.name.endswith('.csv'):
df = pd.read_csv(fil.name, header=None, names=['tweet'], usecols=[0])
elif fil.name.endswith('.xlsx') or fil.name.endswith('.xls'):
df = pd.read_excel(fil.name, header=None, names=['tweet'], usecols=[0])
else:
raise ValueError("Unsupported file type. Please upload a CSV or Excel file.")
lst = list(df['tweet'])
m =[normalizeTweet(i) for i in lst]
d = pipe2(m)
structured_data = []
# Iterate over the list of dictionaries and convert each to a structured dictionary
for item in d:
labels = item['label']
scores = item['score']
structured_data.append({ "label": labels, "score": scores})
# Convert the list of dictionaries to a DataFrame
df1 = pd.DataFrame(structured_data)
df = pd.concat([df, df1], axis=1)
fig = plt.figure() #figsize=(8, 6)
sns.countplot(x='label', data=df, palette='viridis')
plt.title('Result: Count Plot') # Add a title to the plot
plt.xlabel('label') # Add label for the x-axis
plt.ylabel('Count')
if text is None:
sentiment = df['label'][0]
# Perform sentiment prediction
if text:
prediction = pipe2([preprocessed_text])[0]
# print(prediction["label"])
labels = prediction['label']
scores = prediction['score']
sentiment = labels
if fil is None:
df= pd.DataFrame([{'tweet':text, 'label':sentiment, "score": scores}])
return sentiment, df, fig
file_path =gr.File(label="Upload a File")
label = gr.Label( label="Labels")
classifier = gr.Interface(classifyB, inputs=[gr.Text(label="Input"),file_path], outputs= [label, gr.DataFrame(headers =['Tweets', 'Label', "Score"], wrap=True), gr.Plot(label="Sarcasm classifier")], title="Sarcasm Classifier") #,theme= 'darkhuggingface'
main = gr.TabbedInterface([detector, classifier],['Analysizer', 'Classifier'], title="Sarcasm Predictor: An Optimized Sentiment Analysis system" )
main.launch(share=True)