Spaces:
Running
Running
init
Browse files- .gitignore +195 -0
- app.py +176 -0
- configs/modnet-hrnet_w18.yml +5 -0
- configs/modnet-mobilenetv2.yml +47 -0
- configs/modnet-resnet50_vd.yml +5 -0
- configs/ppmatting-1024.yml +29 -0
- configs/ppmatting-2048.yml +54 -0
- configs/ppmatting-512.yml +44 -0
- configs/ppmatting-hrnet_w48-composition.yml +7 -0
- configs/ppmatting-hrnet_w48-distinctions.yml +55 -0
- ppmatting/__init__.py +1 -0
- ppmatting/core/__init__.py +4 -0
- ppmatting/core/predict.py +58 -0
- ppmatting/core/train.py +315 -0
- ppmatting/core/val.py +162 -0
- ppmatting/core/val_ml.py +162 -0
- ppmatting/datasets/__init__.py +17 -0
- ppmatting/datasets/composition_1k.py +31 -0
- ppmatting/datasets/distinctions_646.py +31 -0
- ppmatting/datasets/matting_dataset.py +251 -0
- ppmatting/metrics/__init__.py +3 -0
- ppmatting/metrics/metric.py +278 -0
- ppmatting/ml/__init__.py +1 -0
- ppmatting/ml/methods.py +97 -0
- ppmatting/models/__init__.py +7 -0
- ppmatting/models/backbone/__init__.py +5 -0
- ppmatting/models/backbone/gca_enc.py +395 -0
- ppmatting/models/backbone/hrnet.py +835 -0
- ppmatting/models/backbone/mobilenet_v2.py +242 -0
- ppmatting/models/backbone/resnet_vd.py +368 -0
- ppmatting/models/backbone/vgg.py +166 -0
- ppmatting/models/dim.py +208 -0
- ppmatting/models/gca.py +305 -0
- ppmatting/models/human_matting.py +454 -0
- ppmatting/models/layers/__init__.py +15 -0
- ppmatting/models/layers/gca_module.py +211 -0
- ppmatting/models/losses/__init__.py +1 -0
- ppmatting/models/losses/loss.py +163 -0
- ppmatting/models/modnet.py +494 -0
- ppmatting/models/ppmatting.py +338 -0
- ppmatting/transforms/__init__.py +1 -0
- ppmatting/transforms/transforms.py +791 -0
- ppmatting/utils/__init__.py +2 -0
- ppmatting/utils/estimate_foreground_ml.py +236 -0
- ppmatting/utils/utils.py +71 -0
.gitignore
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
|
3 |
+
/models
|
4 |
+
/images
|
5 |
+
|
6 |
+
# Created by https://www.toptal.com/developers/gitignore/api/visualstudiocode,python
|
7 |
+
# Edit at https://www.toptal.com/developers/gitignore?templates=visualstudiocode,python
|
8 |
+
|
9 |
+
### Python ###
|
10 |
+
# Byte-compiled / optimized / DLL files
|
11 |
+
__pycache__/
|
12 |
+
*.py[cod]
|
13 |
+
*$py.class
|
14 |
+
|
15 |
+
# C extensions
|
16 |
+
*.so
|
17 |
+
|
18 |
+
# Distribution / packaging
|
19 |
+
.Python
|
20 |
+
build/
|
21 |
+
develop-eggs/
|
22 |
+
dist/
|
23 |
+
downloads/
|
24 |
+
eggs/
|
25 |
+
.eggs/
|
26 |
+
lib/
|
27 |
+
lib64/
|
28 |
+
parts/
|
29 |
+
sdist/
|
30 |
+
var/
|
31 |
+
wheels/
|
32 |
+
share/python-wheels/
|
33 |
+
*.egg-info/
|
34 |
+
.installed.cfg
|
35 |
+
*.egg
|
36 |
+
MANIFEST
|
37 |
+
|
38 |
+
# PyInstaller
|
39 |
+
# Usually these files are written by a python script from a template
|
40 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
41 |
+
*.manifest
|
42 |
+
*.spec
|
43 |
+
|
44 |
+
# Installer logs
|
45 |
+
pip-log.txt
|
46 |
+
pip-delete-this-directory.txt
|
47 |
+
|
48 |
+
# Unit test / coverage reports
|
49 |
+
htmlcov/
|
50 |
+
.tox/
|
51 |
+
.nox/
|
52 |
+
.coverage
|
53 |
+
.coverage.*
|
54 |
+
.cache
|
55 |
+
nosetests.xml
|
56 |
+
coverage.xml
|
57 |
+
*.cover
|
58 |
+
*.py,cover
|
59 |
+
.hypothesis/
|
60 |
+
.pytest_cache/
|
61 |
+
cover/
|
62 |
+
|
63 |
+
# Translations
|
64 |
+
*.mo
|
65 |
+
*.pot
|
66 |
+
|
67 |
+
# Django stuff:
|
68 |
+
*.log
|
69 |
+
local_settings.py
|
70 |
+
db.sqlite3
|
71 |
+
db.sqlite3-journal
|
72 |
+
|
73 |
+
# Flask stuff:
|
74 |
+
instance/
|
75 |
+
.webassets-cache
|
76 |
+
|
77 |
+
# Scrapy stuff:
|
78 |
+
.scrapy
|
79 |
+
|
80 |
+
# Sphinx documentation
|
81 |
+
docs/_build/
|
82 |
+
|
83 |
+
# PyBuilder
|
84 |
+
.pybuilder/
|
85 |
+
target/
|
86 |
+
|
87 |
+
# Jupyter Notebook
|
88 |
+
.ipynb_checkpoints
|
89 |
+
|
90 |
+
# IPython
|
91 |
+
profile_default/
|
92 |
+
ipython_config.py
|
93 |
+
|
94 |
+
# pyenv
|
95 |
+
# For a library or package, you might want to ignore these files since the code is
|
96 |
+
# intended to run in multiple environments; otherwise, check them in:
|
97 |
+
# .python-version
|
98 |
+
|
99 |
+
# pipenv
|
100 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
101 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
102 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
103 |
+
# install all needed dependencies.
|
104 |
+
#Pipfile.lock
|
105 |
+
|
106 |
+
# poetry
|
107 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
108 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
109 |
+
# commonly ignored for libraries.
|
110 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
111 |
+
#poetry.lock
|
112 |
+
|
113 |
+
# pdm
|
114 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
115 |
+
#pdm.lock
|
116 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
117 |
+
# in version control.
|
118 |
+
# https://pdm.fming.dev/#use-with-ide
|
119 |
+
.pdm.toml
|
120 |
+
|
121 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
122 |
+
__pypackages__/
|
123 |
+
|
124 |
+
# Celery stuff
|
125 |
+
celerybeat-schedule
|
126 |
+
celerybeat.pid
|
127 |
+
|
128 |
+
# SageMath parsed files
|
129 |
+
*.sage.py
|
130 |
+
|
131 |
+
# Environments
|
132 |
+
.env
|
133 |
+
.venv
|
134 |
+
env/
|
135 |
+
venv/
|
136 |
+
ENV/
|
137 |
+
env.bak/
|
138 |
+
venv.bak/
|
139 |
+
|
140 |
+
# Spyder project settings
|
141 |
+
.spyderproject
|
142 |
+
.spyproject
|
143 |
+
|
144 |
+
# Rope project settings
|
145 |
+
.ropeproject
|
146 |
+
|
147 |
+
# mkdocs documentation
|
148 |
+
/site
|
149 |
+
|
150 |
+
# mypy
|
151 |
+
.mypy_cache/
|
152 |
+
.dmypy.json
|
153 |
+
dmypy.json
|
154 |
+
|
155 |
+
# Pyre type checker
|
156 |
+
.pyre/
|
157 |
+
|
158 |
+
# pytype static type analyzer
|
159 |
+
.pytype/
|
160 |
+
|
161 |
+
# Cython debug symbols
|
162 |
+
cython_debug/
|
163 |
+
|
164 |
+
# PyCharm
|
165 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
166 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
167 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
168 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
169 |
+
#.idea/
|
170 |
+
|
171 |
+
### Python Patch ###
|
172 |
+
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
|
173 |
+
poetry.toml
|
174 |
+
|
175 |
+
|
176 |
+
### VisualStudioCode ###
|
177 |
+
.vscode/*
|
178 |
+
!.vscode/settings.json
|
179 |
+
!.vscode/tasks.json
|
180 |
+
!.vscode/launch.json
|
181 |
+
!.vscode/extensions.json
|
182 |
+
!.vscode/*.code-snippets
|
183 |
+
|
184 |
+
# Local History for Visual Studio Code
|
185 |
+
.history/
|
186 |
+
|
187 |
+
# Built Visual Studio Code Extensions
|
188 |
+
*.vsix
|
189 |
+
|
190 |
+
### VisualStudioCode Patch ###
|
191 |
+
# Ignore all local history of files
|
192 |
+
.history
|
193 |
+
.ionide
|
194 |
+
|
195 |
+
# End of https://www.toptal.com/developers/gitignore/api/visualstudiocode,python
|
app.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from hashlib import sha1
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from paddleseg.cvlibs import manager, Config
|
10 |
+
from paddleseg.utils import load_entire_model
|
11 |
+
|
12 |
+
manager.BACKBONES._components_dict.clear()
|
13 |
+
manager.TRANSFORMS._components_dict.clear()
|
14 |
+
|
15 |
+
import ppmatting as ppmatting
|
16 |
+
from ppmatting.core import predict
|
17 |
+
from ppmatting.utils import estimate_foreground_ml
|
18 |
+
|
19 |
+
model_names = [
|
20 |
+
"modnet-mobilenetv2",
|
21 |
+
"ppmatting-512",
|
22 |
+
"ppmatting-1024",
|
23 |
+
"ppmatting-2048",
|
24 |
+
"modnet-hrnet_w18",
|
25 |
+
"modnet-resnet50_vd",
|
26 |
+
]
|
27 |
+
model_dict = {
|
28 |
+
name: None
|
29 |
+
for name in model_names
|
30 |
+
}
|
31 |
+
|
32 |
+
last_result = {
|
33 |
+
"cache_key": None,
|
34 |
+
"algorithm": None,
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
def image_matting(
|
39 |
+
image: np.ndarray,
|
40 |
+
result_type: str,
|
41 |
+
bg_color: str,
|
42 |
+
algorithm: str,
|
43 |
+
morph_op: str,
|
44 |
+
morph_op_factor: float,
|
45 |
+
) -> np.ndarray:
|
46 |
+
image = np.ascontiguousarray(image)
|
47 |
+
cache_key = sha1(image).hexdigest()
|
48 |
+
if cache_key == last_result["cache_key"] and algorithm == last_result["algorithm"]:
|
49 |
+
alpha = last_result["alpha"]
|
50 |
+
else:
|
51 |
+
cfg = Config(f"configs/{algorithm}.yml")
|
52 |
+
if model_dict[algorithm] is not None:
|
53 |
+
model = model_dict[algorithm]
|
54 |
+
else:
|
55 |
+
model = cfg.model
|
56 |
+
load_entire_model(model, f"models/{algorithm}.pdparams")
|
57 |
+
model.eval()
|
58 |
+
model_dict[algorithm] = model
|
59 |
+
|
60 |
+
transforms = ppmatting.transforms.Compose(cfg.val_transforms)
|
61 |
+
|
62 |
+
alpha = predict(
|
63 |
+
model,
|
64 |
+
transforms=transforms,
|
65 |
+
image=image,
|
66 |
+
)
|
67 |
+
last_result["cache_key"] = cache_key
|
68 |
+
last_result["algorithm"] = algorithm
|
69 |
+
last_result["alpha"] = alpha
|
70 |
+
|
71 |
+
alpha = (alpha * 255).astype(np.uint8)
|
72 |
+
kernel = np.ones((5, 5), np.uint8)
|
73 |
+
if morph_op == "dilate":
|
74 |
+
alpha = cv2.dilate(alpha, kernel, iterations=int(morph_op_factor))
|
75 |
+
else:
|
76 |
+
alpha = cv2.erode(alpha, kernel, iterations=int(morph_op_factor))
|
77 |
+
alpha = (alpha / 255).astype(np.float32)
|
78 |
+
|
79 |
+
image = (image / 255.0).astype("float32")
|
80 |
+
fg = estimate_foreground_ml(image, alpha)
|
81 |
+
|
82 |
+
if result_type == "Remove BG":
|
83 |
+
result = np.concatenate((fg, alpha[:, :, None]), axis=-1)
|
84 |
+
elif result_type == "Replace BG":
|
85 |
+
bg_r = int(bg_color[1:3], base=16)
|
86 |
+
bg_g = int(bg_color[3:5], base=16)
|
87 |
+
bg_b = int(bg_color[5:7], base=16)
|
88 |
+
|
89 |
+
bg = np.zeros_like(fg)
|
90 |
+
bg[:, :, 0] = bg_r / 255.
|
91 |
+
bg[:, :, 1] = bg_g / 255.
|
92 |
+
bg[:, :, 2] = bg_b / 255.
|
93 |
+
|
94 |
+
result = alpha[:, :, None] * fg + (1 - alpha[:, :, None]) * bg
|
95 |
+
result = np.clip(result, 0, 1)
|
96 |
+
else:
|
97 |
+
result = alpha
|
98 |
+
|
99 |
+
return result
|
100 |
+
|
101 |
+
|
102 |
+
def main():
|
103 |
+
images_path = Path("images")
|
104 |
+
if not images_path.exists():
|
105 |
+
images_path.mkdir()
|
106 |
+
|
107 |
+
with gr.Blocks() as app:
|
108 |
+
gr.Markdown("Image Matting Powered By AI")
|
109 |
+
|
110 |
+
with gr.Row(variant="panel"):
|
111 |
+
image_input = gr.Image()
|
112 |
+
image_output = gr.Image()
|
113 |
+
|
114 |
+
with gr.Row(variant="panel"):
|
115 |
+
result_type = gr.Radio(
|
116 |
+
label="Mode",
|
117 |
+
show_label=True,
|
118 |
+
choices=[
|
119 |
+
"Remove BG",
|
120 |
+
"Replace BG",
|
121 |
+
"Generate Mask",
|
122 |
+
],
|
123 |
+
value="Remove BG",
|
124 |
+
)
|
125 |
+
bg_color = gr.ColorPicker(
|
126 |
+
label="BG Color",
|
127 |
+
show_label=True,
|
128 |
+
value="#000000",
|
129 |
+
)
|
130 |
+
algorithm = gr.Dropdown(
|
131 |
+
label="Algorithm",
|
132 |
+
show_label=True,
|
133 |
+
choices=model_names,
|
134 |
+
value="modnet-hrnet_w18"
|
135 |
+
)
|
136 |
+
|
137 |
+
with gr.Row(variant="panel"):
|
138 |
+
morph_op = gr.Radio(
|
139 |
+
label="Post-process",
|
140 |
+
show_label=True,
|
141 |
+
choices=[
|
142 |
+
"Dilate",
|
143 |
+
"Erode",
|
144 |
+
],
|
145 |
+
value="Dilate",
|
146 |
+
)
|
147 |
+
|
148 |
+
morph_op_factor = gr.Slider(
|
149 |
+
label="Factor",
|
150 |
+
show_label=True,
|
151 |
+
minimum=0,
|
152 |
+
maximum=20,
|
153 |
+
value=0,
|
154 |
+
step=1,
|
155 |
+
)
|
156 |
+
|
157 |
+
run_button = gr.Button("Run")
|
158 |
+
|
159 |
+
run_button.click(
|
160 |
+
image_matting,
|
161 |
+
inputs=[
|
162 |
+
image_input,
|
163 |
+
result_type,
|
164 |
+
bg_color,
|
165 |
+
algorithm,
|
166 |
+
morph_op,
|
167 |
+
morph_op_factor,
|
168 |
+
],
|
169 |
+
outputs=image_output,
|
170 |
+
)
|
171 |
+
|
172 |
+
app.launch(share=True)
|
173 |
+
|
174 |
+
|
175 |
+
if __name__ == "__main__":
|
176 |
+
main()
|
configs/modnet-hrnet_w18.yml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_: modnet-mobilenetv2.yml
|
2 |
+
model:
|
3 |
+
backbone:
|
4 |
+
type: HRNet_W18
|
5 |
+
# pretrained: https://bj.bcebos.com/paddleseg/dygraph/hrnet_w18_ssld.tar.gz
|
configs/modnet-mobilenetv2.yml
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size: 16
|
2 |
+
iters: 100000
|
3 |
+
|
4 |
+
train_dataset:
|
5 |
+
type: MattingDataset
|
6 |
+
dataset_root: data/PPM-100
|
7 |
+
train_file: train.txt
|
8 |
+
transforms:
|
9 |
+
- type: LoadImages
|
10 |
+
- type: RandomCrop
|
11 |
+
crop_size: [512, 512]
|
12 |
+
- type: RandomDistort
|
13 |
+
- type: RandomBlur
|
14 |
+
- type: RandomHorizontalFlip
|
15 |
+
- type: Normalize
|
16 |
+
mode: train
|
17 |
+
|
18 |
+
val_dataset:
|
19 |
+
type: MattingDataset
|
20 |
+
dataset_root: data/PPM-100
|
21 |
+
val_file: val.txt
|
22 |
+
transforms:
|
23 |
+
- type: LoadImages
|
24 |
+
- type: ResizeByShort
|
25 |
+
short_size: 512
|
26 |
+
- type: ResizeToIntMult
|
27 |
+
mult_int: 32
|
28 |
+
- type: Normalize
|
29 |
+
mode: val
|
30 |
+
get_trimap: False
|
31 |
+
|
32 |
+
model:
|
33 |
+
type: MODNet
|
34 |
+
backbone:
|
35 |
+
type: MobileNetV2
|
36 |
+
# pretrained: https://paddleseg.bj.bcebos.com/matting/models/MobileNetV2_pretrained/model.pdparams
|
37 |
+
pretrained: Null
|
38 |
+
|
39 |
+
optimizer:
|
40 |
+
type: sgd
|
41 |
+
momentum: 0.9
|
42 |
+
weight_decay: 4.0e-5
|
43 |
+
|
44 |
+
lr_scheduler:
|
45 |
+
type: PiecewiseDecay
|
46 |
+
boundaries: [40000, 80000]
|
47 |
+
values: [0.02, 0.002, 0.0002]
|
configs/modnet-resnet50_vd.yml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_: modnet-mobilenetv2.yml
|
2 |
+
model:
|
3 |
+
backbone:
|
4 |
+
type: ResNet50_vd
|
5 |
+
# pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet50_vd_ssld_v2.tar.gz
|
configs/ppmatting-1024.yml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_: 'ppmatting-hrnet_w18-human_512.yml'
|
2 |
+
|
3 |
+
|
4 |
+
train_dataset:
|
5 |
+
transforms:
|
6 |
+
- type: LoadImages
|
7 |
+
- type: LimitShort
|
8 |
+
max_short: 1024
|
9 |
+
- type: RandomCrop
|
10 |
+
crop_size: [1024, 1024]
|
11 |
+
- type: RandomDistort
|
12 |
+
- type: RandomBlur
|
13 |
+
prob: 0.1
|
14 |
+
- type: RandomNoise
|
15 |
+
prob: 0.5
|
16 |
+
- type: RandomReJpeg
|
17 |
+
prob: 0.2
|
18 |
+
- type: RandomHorizontalFlip
|
19 |
+
- type: Normalize
|
20 |
+
|
21 |
+
val_dataset:
|
22 |
+
transforms:
|
23 |
+
- type: LoadImages
|
24 |
+
- type: LimitShort
|
25 |
+
max_short: 1024
|
26 |
+
- type: ResizeToIntMult
|
27 |
+
mult_int: 32
|
28 |
+
- type: Normalize
|
29 |
+
|
configs/ppmatting-2048.yml
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size: 4
|
2 |
+
iters: 50000
|
3 |
+
|
4 |
+
train_dataset:
|
5 |
+
type: MattingDataset
|
6 |
+
dataset_root: data/PPM-100
|
7 |
+
train_file: train.txt
|
8 |
+
transforms:
|
9 |
+
- type: LoadImages
|
10 |
+
- type: RandomResize
|
11 |
+
size: [2048, 2048]
|
12 |
+
scale: [0.3, 1.5]
|
13 |
+
- type: RandomCrop
|
14 |
+
crop_size: [2048, 2048]
|
15 |
+
- type: RandomDistort
|
16 |
+
- type: RandomBlur
|
17 |
+
prob: 0.1
|
18 |
+
- type: RandomHorizontalFlip
|
19 |
+
- type: Padding
|
20 |
+
target_size: [2048, 2048]
|
21 |
+
- type: Normalize
|
22 |
+
mode: train
|
23 |
+
|
24 |
+
val_dataset:
|
25 |
+
type: MattingDataset
|
26 |
+
dataset_root: data/PPM-100
|
27 |
+
val_file: val.txt
|
28 |
+
transforms:
|
29 |
+
- type: LoadImages
|
30 |
+
- type: ResizeByShort
|
31 |
+
short_size: 2048
|
32 |
+
- type: ResizeToIntMult
|
33 |
+
mult_int: 128
|
34 |
+
- type: Normalize
|
35 |
+
mode: val
|
36 |
+
get_trimap: False
|
37 |
+
|
38 |
+
model:
|
39 |
+
type: HumanMatting
|
40 |
+
backbone:
|
41 |
+
type: ResNet34_vd
|
42 |
+
# pretrained: https://paddleseg.bj.bcebos.com/matting/models/ResNet34_vd_pretrained/model.pdparams
|
43 |
+
pretrained: Null
|
44 |
+
if_refine: True
|
45 |
+
|
46 |
+
optimizer:
|
47 |
+
type: sgd
|
48 |
+
momentum: 0.9
|
49 |
+
weight_decay: 4.0e-5
|
50 |
+
|
51 |
+
lr_scheduler:
|
52 |
+
type: PiecewiseDecay
|
53 |
+
boundaries: [30000, 40000]
|
54 |
+
values: [0.001, 0.0001, 0.00001]
|
configs/ppmatting-512.yml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_: 'ppmatting-hrnet_w48-distinctions.yml'
|
2 |
+
|
3 |
+
batch_size: 4
|
4 |
+
iters: 200000
|
5 |
+
|
6 |
+
train_dataset:
|
7 |
+
type: MattingDataset
|
8 |
+
dataset_root: data/PPM-100
|
9 |
+
train_file: train.txt
|
10 |
+
transforms:
|
11 |
+
- type: LoadImages
|
12 |
+
- type: LimitShort
|
13 |
+
max_short: 512
|
14 |
+
- type: RandomCrop
|
15 |
+
crop_size: [512, 512]
|
16 |
+
- type: RandomDistort
|
17 |
+
- type: RandomBlur
|
18 |
+
prob: 0.1
|
19 |
+
- type: RandomNoise
|
20 |
+
prob: 0.5
|
21 |
+
- type: RandomReJpeg
|
22 |
+
prob: 0.2
|
23 |
+
- type: RandomHorizontalFlip
|
24 |
+
- type: Normalize
|
25 |
+
mode: train
|
26 |
+
|
27 |
+
val_dataset:
|
28 |
+
type: MattingDataset
|
29 |
+
dataset_root: data/PPM-100
|
30 |
+
val_file: val.txt
|
31 |
+
transforms:
|
32 |
+
- type: LoadImages
|
33 |
+
- type: LimitShort
|
34 |
+
max_short: 512
|
35 |
+
- type: ResizeToIntMult
|
36 |
+
mult_int: 32
|
37 |
+
- type: Normalize
|
38 |
+
mode: val
|
39 |
+
get_trimap: False
|
40 |
+
|
41 |
+
model:
|
42 |
+
backbone:
|
43 |
+
type: HRNet_W18
|
44 |
+
# pretrained: https://bj.bcebos.com/paddleseg/dygraph/hrnet_w18_ssld.tar.gz
|
configs/ppmatting-hrnet_w48-composition.yml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_: 'ppmatting-hrnet_w48-distinctions.yml'
|
2 |
+
|
3 |
+
train_dataset:
|
4 |
+
dataset_root: data/matting/Composition-1k
|
5 |
+
|
6 |
+
val_dataset:
|
7 |
+
dataset_root: data/matting/Composition-1k
|
configs/ppmatting-hrnet_w48-distinctions.yml
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size: 4
|
2 |
+
iters: 300000
|
3 |
+
|
4 |
+
train_dataset:
|
5 |
+
type: MattingDataset
|
6 |
+
dataset_root: data/matting/Distinctions-646
|
7 |
+
train_file: train.txt
|
8 |
+
transforms:
|
9 |
+
- type: LoadImages
|
10 |
+
- type: Padding
|
11 |
+
target_size: [512, 512]
|
12 |
+
- type: RandomCrop
|
13 |
+
crop_size: [[512, 512],[640, 640], [800, 800]]
|
14 |
+
- type: Resize
|
15 |
+
target_size: [512, 512]
|
16 |
+
- type: RandomDistort
|
17 |
+
- type: RandomBlur
|
18 |
+
prob: 0.1
|
19 |
+
- type: RandomHorizontalFlip
|
20 |
+
- type: Normalize
|
21 |
+
mode: train
|
22 |
+
separator: '|'
|
23 |
+
|
24 |
+
val_dataset:
|
25 |
+
type: MattingDataset
|
26 |
+
dataset_root: data/matting/Distinctions-646
|
27 |
+
val_file: val.txt
|
28 |
+
transforms:
|
29 |
+
- type: LoadImages
|
30 |
+
- type: LimitShort
|
31 |
+
max_short: 1536
|
32 |
+
- type: ResizeToIntMult
|
33 |
+
mult_int: 32
|
34 |
+
- type: Normalize
|
35 |
+
mode: val
|
36 |
+
get_trimap: False
|
37 |
+
separator: '|'
|
38 |
+
|
39 |
+
model:
|
40 |
+
type: PPMatting
|
41 |
+
backbone:
|
42 |
+
type: HRNet_W48
|
43 |
+
# pretrained: https://bj.bcebos.com/paddleseg/dygraph/hrnet_w48_ssld.tar.gz
|
44 |
+
pretrained: Null
|
45 |
+
|
46 |
+
optimizer:
|
47 |
+
type: sgd
|
48 |
+
momentum: 0.9
|
49 |
+
weight_decay: 4.0e-5
|
50 |
+
|
51 |
+
lr_scheduler:
|
52 |
+
type: PolynomialDecay
|
53 |
+
learning_rate: 0.01
|
54 |
+
end_lr: 0
|
55 |
+
power: 0.9
|
ppmatting/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from . import ml, metrics, transforms, datasets, models
|
ppmatting/core/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .val import evaluate
|
2 |
+
from .val_ml import evaluate_ml
|
3 |
+
from .train import train
|
4 |
+
from .predict import predict
|
ppmatting/core/predict.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import paddle
|
5 |
+
import paddle.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def reverse_transform(alpha, trans_info):
|
9 |
+
"""recover pred to origin shape"""
|
10 |
+
for item in trans_info[::-1]:
|
11 |
+
if item[0] == "resize":
|
12 |
+
h, w = item[1][0], item[1][1]
|
13 |
+
alpha = F.interpolate(alpha, [h, w], mode="bilinear")
|
14 |
+
elif item[0] == "padding":
|
15 |
+
h, w = item[1][0], item[1][1]
|
16 |
+
alpha = alpha[:, :, 0:h, 0:w]
|
17 |
+
else:
|
18 |
+
raise Exception(f"Unexpected info '{item[0]}' in im_info")
|
19 |
+
|
20 |
+
return alpha
|
21 |
+
|
22 |
+
|
23 |
+
def preprocess(img, transforms, trimap=None):
|
24 |
+
data = {}
|
25 |
+
data["img"] = img
|
26 |
+
if trimap is not None:
|
27 |
+
data["trimap"] = trimap
|
28 |
+
data["gt_fields"] = ["trimap"]
|
29 |
+
data["trans_info"] = []
|
30 |
+
data = transforms(data)
|
31 |
+
data["img"] = paddle.to_tensor(data["img"])
|
32 |
+
data["img"] = data["img"].unsqueeze(0)
|
33 |
+
if trimap is not None:
|
34 |
+
data["trimap"] = paddle.to_tensor(data["trimap"])
|
35 |
+
data["trimap"] = data["trimap"].unsqueeze((0, 1))
|
36 |
+
|
37 |
+
return data
|
38 |
+
|
39 |
+
|
40 |
+
def predict(
|
41 |
+
model,
|
42 |
+
transforms,
|
43 |
+
image: np.ndarray,
|
44 |
+
trimap: Optional[np.ndarray] = None,
|
45 |
+
):
|
46 |
+
with paddle.no_grad():
|
47 |
+
data = preprocess(img=image, transforms=transforms, trimap=None)
|
48 |
+
|
49 |
+
alpha = model(data)
|
50 |
+
|
51 |
+
alpha = reverse_transform(alpha, data["trans_info"])
|
52 |
+
alpha = alpha.numpy().squeeze()
|
53 |
+
|
54 |
+
if trimap is not None:
|
55 |
+
alpha[trimap == 0] = 0
|
56 |
+
alpha[trimap == 255] = 1.
|
57 |
+
|
58 |
+
return alpha
|
ppmatting/core/train.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import time
|
17 |
+
from collections import deque, defaultdict
|
18 |
+
import pickle
|
19 |
+
import shutil
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import paddle
|
23 |
+
import paddle.nn.functional as F
|
24 |
+
from paddleseg.utils import TimeAverager, calculate_eta, resume, logger
|
25 |
+
|
26 |
+
from .val import evaluate
|
27 |
+
|
28 |
+
|
29 |
+
def visual_in_traning(log_writer, vis_dict, step):
|
30 |
+
"""
|
31 |
+
Visual in vdl
|
32 |
+
|
33 |
+
Args:
|
34 |
+
log_writer (LogWriter): The log writer of vdl.
|
35 |
+
vis_dict (dict): Dict of tensor. The shape of thesor is (C, H, W)
|
36 |
+
"""
|
37 |
+
for key, value in vis_dict.items():
|
38 |
+
value_shape = value.shape
|
39 |
+
if value_shape[0] not in [1, 3]:
|
40 |
+
value = value[0]
|
41 |
+
value = value.unsqueeze(0)
|
42 |
+
value = paddle.transpose(value, (1, 2, 0))
|
43 |
+
min_v = paddle.min(value)
|
44 |
+
max_v = paddle.max(value)
|
45 |
+
if (min_v > 0) and (max_v < 1):
|
46 |
+
value = value * 255
|
47 |
+
elif (min_v < 0 and min_v >= -1) and (max_v <= 1):
|
48 |
+
value = (1 + value) / 2 * 255
|
49 |
+
else:
|
50 |
+
value = (value - min_v) / (max_v - min_v) * 255
|
51 |
+
|
52 |
+
value = value.astype('uint8')
|
53 |
+
value = value.numpy()
|
54 |
+
log_writer.add_image(tag=key, img=value, step=step)
|
55 |
+
|
56 |
+
|
57 |
+
def save_best(best_model_dir, metrics_data, iter):
|
58 |
+
with open(os.path.join(best_model_dir, 'best_metrics.txt'), 'w') as f:
|
59 |
+
for key, value in metrics_data.items():
|
60 |
+
line = key + ' ' + str(value) + '\n'
|
61 |
+
f.write(line)
|
62 |
+
f.write('iter' + ' ' + str(iter) + '\n')
|
63 |
+
|
64 |
+
|
65 |
+
def get_best(best_file, metrics, resume_model=None):
|
66 |
+
'''Get best metrics and iter from file'''
|
67 |
+
best_metrics_data = {}
|
68 |
+
if os.path.exists(best_file) and (resume_model is not None):
|
69 |
+
values = []
|
70 |
+
with open(best_file, 'r') as f:
|
71 |
+
lines = f.readlines()
|
72 |
+
for line in lines:
|
73 |
+
line = line.strip()
|
74 |
+
key, value = line.split(' ')
|
75 |
+
best_metrics_data[key] = eval(value)
|
76 |
+
if key == 'iter':
|
77 |
+
best_iter = eval(value)
|
78 |
+
else:
|
79 |
+
for key in metrics:
|
80 |
+
best_metrics_data[key] = np.inf
|
81 |
+
best_iter = -1
|
82 |
+
return best_metrics_data, best_iter
|
83 |
+
|
84 |
+
|
85 |
+
def train(model,
|
86 |
+
train_dataset,
|
87 |
+
val_dataset=None,
|
88 |
+
optimizer=None,
|
89 |
+
save_dir='output',
|
90 |
+
iters=10000,
|
91 |
+
batch_size=2,
|
92 |
+
resume_model=None,
|
93 |
+
save_interval=1000,
|
94 |
+
log_iters=10,
|
95 |
+
log_image_iters=1000,
|
96 |
+
num_workers=0,
|
97 |
+
use_vdl=False,
|
98 |
+
losses=None,
|
99 |
+
keep_checkpoint_max=5,
|
100 |
+
eval_begin_iters=None,
|
101 |
+
metrics='sad'):
|
102 |
+
"""
|
103 |
+
Launch training.
|
104 |
+
Args:
|
105 |
+
model(nn.Layer): A matting model.
|
106 |
+
train_dataset (paddle.io.Dataset): Used to read and process training datasets.
|
107 |
+
val_dataset (paddle.io.Dataset, optional): Used to read and process validation datasets.
|
108 |
+
optimizer (paddle.optimizer.Optimizer): The optimizer.
|
109 |
+
save_dir (str, optional): The directory for saving the model snapshot. Default: 'output'.
|
110 |
+
iters (int, optional): How may iters to train the model. Defualt: 10000.
|
111 |
+
batch_size (int, optional): Mini batch size of one gpu or cpu. Default: 2.
|
112 |
+
resume_model (str, optional): The path of resume model.
|
113 |
+
save_interval (int, optional): How many iters to save a model snapshot once during training. Default: 1000.
|
114 |
+
log_iters (int, optional): Display logging information at every log_iters. Default: 10.
|
115 |
+
log_image_iters (int, optional): Log image to vdl. Default: 1000.
|
116 |
+
num_workers (int, optional): Num workers for data loader. Default: 0.
|
117 |
+
use_vdl (bool, optional): Whether to record the data to VisualDL during training. Default: False.
|
118 |
+
losses (dict, optional): A dict of loss, refer to the loss function of the model for details. Default: None.
|
119 |
+
keep_checkpoint_max (int, optional): Maximum number of checkpoints to save. Default: 5.
|
120 |
+
eval_begin_iters (int): The iters begin evaluation. It will evaluate at iters/2 if it is None. Defalust: None.
|
121 |
+
metrics(str|list, optional): The metrics to evaluate, it may be the combination of ("sad", "mse", "grad", "conn").
|
122 |
+
"""
|
123 |
+
model.train()
|
124 |
+
nranks = paddle.distributed.ParallelEnv().nranks
|
125 |
+
local_rank = paddle.distributed.ParallelEnv().local_rank
|
126 |
+
|
127 |
+
start_iter = 0
|
128 |
+
if resume_model is not None:
|
129 |
+
start_iter = resume(model, optimizer, resume_model)
|
130 |
+
|
131 |
+
if not os.path.isdir(save_dir):
|
132 |
+
if os.path.exists(save_dir):
|
133 |
+
os.remove(save_dir)
|
134 |
+
os.makedirs(save_dir)
|
135 |
+
|
136 |
+
if nranks > 1:
|
137 |
+
# Initialize parallel environment if not done.
|
138 |
+
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
|
139 |
+
):
|
140 |
+
paddle.distributed.init_parallel_env()
|
141 |
+
ddp_model = paddle.DataParallel(model)
|
142 |
+
else:
|
143 |
+
ddp_model = paddle.DataParallel(model)
|
144 |
+
|
145 |
+
batch_sampler = paddle.io.DistributedBatchSampler(
|
146 |
+
train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
|
147 |
+
|
148 |
+
loader = paddle.io.DataLoader(
|
149 |
+
train_dataset,
|
150 |
+
batch_sampler=batch_sampler,
|
151 |
+
num_workers=num_workers,
|
152 |
+
return_list=True, )
|
153 |
+
|
154 |
+
if use_vdl:
|
155 |
+
from visualdl import LogWriter
|
156 |
+
log_writer = LogWriter(save_dir)
|
157 |
+
|
158 |
+
if isinstance(metrics, str):
|
159 |
+
metrics = [metrics]
|
160 |
+
elif not isinstance(metrics, list):
|
161 |
+
metrics = ['sad']
|
162 |
+
best_metrics_data, best_iter = get_best(
|
163 |
+
os.path.join(save_dir, 'best_model', 'best_metrics.txt'),
|
164 |
+
metrics,
|
165 |
+
resume_model=resume_model)
|
166 |
+
avg_loss = defaultdict(float)
|
167 |
+
iters_per_epoch = len(batch_sampler)
|
168 |
+
reader_cost_averager = TimeAverager()
|
169 |
+
batch_cost_averager = TimeAverager()
|
170 |
+
save_models = deque()
|
171 |
+
batch_start = time.time()
|
172 |
+
|
173 |
+
iter = start_iter
|
174 |
+
while iter < iters:
|
175 |
+
for data in loader:
|
176 |
+
iter += 1
|
177 |
+
if iter > iters:
|
178 |
+
break
|
179 |
+
reader_cost_averager.record(time.time() - batch_start)
|
180 |
+
|
181 |
+
logit_dict, loss_dict = ddp_model(data) if nranks > 1 else model(
|
182 |
+
data)
|
183 |
+
|
184 |
+
loss_dict['all'].backward()
|
185 |
+
|
186 |
+
optimizer.step()
|
187 |
+
lr = optimizer.get_lr()
|
188 |
+
if isinstance(optimizer._learning_rate,
|
189 |
+
paddle.optimizer.lr.LRScheduler):
|
190 |
+
optimizer._learning_rate.step()
|
191 |
+
model.clear_gradients()
|
192 |
+
|
193 |
+
for key, value in loss_dict.items():
|
194 |
+
avg_loss[key] += value.numpy()[0]
|
195 |
+
batch_cost_averager.record(
|
196 |
+
time.time() - batch_start, num_samples=batch_size)
|
197 |
+
|
198 |
+
if (iter) % log_iters == 0 and local_rank == 0:
|
199 |
+
for key, value in avg_loss.items():
|
200 |
+
avg_loss[key] = value / log_iters
|
201 |
+
remain_iters = iters - iter
|
202 |
+
avg_train_batch_cost = batch_cost_averager.get_average()
|
203 |
+
avg_train_reader_cost = reader_cost_averager.get_average()
|
204 |
+
eta = calculate_eta(remain_iters, avg_train_batch_cost)
|
205 |
+
# loss info
|
206 |
+
loss_str = ' ' * 26 + '\t[LOSSES]'
|
207 |
+
loss_str = loss_str
|
208 |
+
for key, value in avg_loss.items():
|
209 |
+
if key != 'all':
|
210 |
+
loss_str = loss_str + ' ' + key + '={:.4f}'.format(
|
211 |
+
value)
|
212 |
+
logger.info(
|
213 |
+
"[TRAIN] epoch={}, iter={}/{}, loss={:.4f}, lr={:.6f}, batch_cost={:.4f}, reader_cost={:.5f}, ips={:.4f} samples/sec | ETA {}\n{}\n"
|
214 |
+
.format((iter - 1) // iters_per_epoch + 1, iter, iters,
|
215 |
+
avg_loss['all'], lr, avg_train_batch_cost,
|
216 |
+
avg_train_reader_cost,
|
217 |
+
batch_cost_averager.get_ips_average(
|
218 |
+
), eta, loss_str))
|
219 |
+
if use_vdl:
|
220 |
+
for key, value in avg_loss.items():
|
221 |
+
log_tag = 'Train/' + key
|
222 |
+
log_writer.add_scalar(log_tag, value, iter)
|
223 |
+
|
224 |
+
log_writer.add_scalar('Train/lr', lr, iter)
|
225 |
+
log_writer.add_scalar('Train/batch_cost',
|
226 |
+
avg_train_batch_cost, iter)
|
227 |
+
log_writer.add_scalar('Train/reader_cost',
|
228 |
+
avg_train_reader_cost, iter)
|
229 |
+
if iter % log_image_iters == 0:
|
230 |
+
vis_dict = {}
|
231 |
+
# ground truth
|
232 |
+
vis_dict['ground truth/img'] = data['img'][0]
|
233 |
+
for key in data['gt_fields']:
|
234 |
+
key = key[0]
|
235 |
+
vis_dict['/'.join(['ground truth', key])] = data[
|
236 |
+
key][0]
|
237 |
+
# predict
|
238 |
+
for key, value in logit_dict.items():
|
239 |
+
vis_dict['/'.join(['predict', key])] = logit_dict[
|
240 |
+
key][0]
|
241 |
+
visual_in_traning(
|
242 |
+
log_writer=log_writer, vis_dict=vis_dict, step=iter)
|
243 |
+
|
244 |
+
for key in avg_loss.keys():
|
245 |
+
avg_loss[key] = 0.
|
246 |
+
reader_cost_averager.reset()
|
247 |
+
batch_cost_averager.reset()
|
248 |
+
|
249 |
+
# save model
|
250 |
+
if (iter % save_interval == 0 or iter == iters) and local_rank == 0:
|
251 |
+
current_save_dir = os.path.join(save_dir,
|
252 |
+
"iter_{}".format(iter))
|
253 |
+
if not os.path.isdir(current_save_dir):
|
254 |
+
os.makedirs(current_save_dir)
|
255 |
+
paddle.save(model.state_dict(),
|
256 |
+
os.path.join(current_save_dir, 'model.pdparams'))
|
257 |
+
paddle.save(optimizer.state_dict(),
|
258 |
+
os.path.join(current_save_dir, 'model.pdopt'))
|
259 |
+
save_models.append(current_save_dir)
|
260 |
+
if len(save_models) > keep_checkpoint_max > 0:
|
261 |
+
model_to_remove = save_models.popleft()
|
262 |
+
shutil.rmtree(model_to_remove)
|
263 |
+
|
264 |
+
# eval model
|
265 |
+
if eval_begin_iters is None:
|
266 |
+
eval_begin_iters = iters // 2
|
267 |
+
if (iter % save_interval == 0 or iter == iters) and (
|
268 |
+
val_dataset is not None
|
269 |
+
) and local_rank == 0 and iter >= eval_begin_iters:
|
270 |
+
num_workers = 1 if num_workers > 0 else 0
|
271 |
+
metrics_data = evaluate(
|
272 |
+
model,
|
273 |
+
val_dataset,
|
274 |
+
num_workers=1,
|
275 |
+
print_detail=True,
|
276 |
+
save_results=False,
|
277 |
+
metrics=metrics)
|
278 |
+
model.train()
|
279 |
+
|
280 |
+
# save best model and add evaluation results to vdl
|
281 |
+
if (iter % save_interval == 0 or iter == iters) and local_rank == 0:
|
282 |
+
if val_dataset is not None and iter >= eval_begin_iters:
|
283 |
+
if metrics_data[metrics[0]] < best_metrics_data[metrics[0]]:
|
284 |
+
best_iter = iter
|
285 |
+
best_metrics_data = metrics_data.copy()
|
286 |
+
best_model_dir = os.path.join(save_dir, "best_model")
|
287 |
+
paddle.save(
|
288 |
+
model.state_dict(),
|
289 |
+
os.path.join(best_model_dir, 'model.pdparams'))
|
290 |
+
save_best(best_model_dir, best_metrics_data, iter)
|
291 |
+
|
292 |
+
show_list = []
|
293 |
+
for key, value in best_metrics_data.items():
|
294 |
+
show_list.append((key, value))
|
295 |
+
log_str = '[EVAL] The model with the best validation {} ({:.4f}) was saved at iter {}.'.format(
|
296 |
+
show_list[0][0], show_list[0][1], best_iter)
|
297 |
+
if len(show_list) > 1:
|
298 |
+
log_str += " While"
|
299 |
+
for i in range(1, len(show_list)):
|
300 |
+
log_str = log_str + ' {}: {:.4f},'.format(
|
301 |
+
show_list[i][0], show_list[i][1])
|
302 |
+
log_str = log_str[:-1]
|
303 |
+
logger.info(log_str)
|
304 |
+
|
305 |
+
if use_vdl:
|
306 |
+
for key, value in metrics_data.items():
|
307 |
+
log_writer.add_scalar('Evaluate/' + key, value,
|
308 |
+
iter)
|
309 |
+
|
310 |
+
batch_start = time.time()
|
311 |
+
|
312 |
+
# Sleep for half a second to let dataloader release resources.
|
313 |
+
time.sleep(0.5)
|
314 |
+
if use_vdl:
|
315 |
+
log_writer.close()
|
ppmatting/core/val.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
|
17 |
+
import cv2
|
18 |
+
import numpy as np
|
19 |
+
import time
|
20 |
+
import paddle
|
21 |
+
import paddle.nn.functional as F
|
22 |
+
from paddleseg.utils import TimeAverager, calculate_eta, logger, progbar
|
23 |
+
|
24 |
+
from ppmatting.metrics import metrics_class_dict
|
25 |
+
|
26 |
+
np.set_printoptions(suppress=True)
|
27 |
+
|
28 |
+
|
29 |
+
def save_alpha_pred(alpha, path):
|
30 |
+
"""
|
31 |
+
The value of alpha is range [0, 1], shape should be [h,w]
|
32 |
+
"""
|
33 |
+
dirname = os.path.dirname(path)
|
34 |
+
if not os.path.exists(dirname):
|
35 |
+
os.makedirs(dirname)
|
36 |
+
|
37 |
+
alpha = (alpha).astype('uint8')
|
38 |
+
cv2.imwrite(path, alpha)
|
39 |
+
|
40 |
+
|
41 |
+
def reverse_transform(alpha, trans_info):
|
42 |
+
"""recover pred to origin shape"""
|
43 |
+
for item in trans_info[::-1]:
|
44 |
+
if item[0][0] == 'resize':
|
45 |
+
h, w = item[1][0], item[1][1]
|
46 |
+
alpha = F.interpolate(alpha, [h, w], mode='bilinear')
|
47 |
+
elif item[0][0] == 'padding':
|
48 |
+
h, w = item[1][0], item[1][1]
|
49 |
+
alpha = alpha[:, :, 0:h, 0:w]
|
50 |
+
else:
|
51 |
+
raise Exception("Unexpected info '{}' in im_info".format(item[0]))
|
52 |
+
return alpha
|
53 |
+
|
54 |
+
|
55 |
+
def evaluate(model,
|
56 |
+
eval_dataset,
|
57 |
+
num_workers=0,
|
58 |
+
print_detail=True,
|
59 |
+
save_dir='output/results',
|
60 |
+
save_results=True,
|
61 |
+
metrics='sad'):
|
62 |
+
model.eval()
|
63 |
+
nranks = paddle.distributed.ParallelEnv().nranks
|
64 |
+
local_rank = paddle.distributed.ParallelEnv().local_rank
|
65 |
+
if nranks > 1:
|
66 |
+
# Initialize parallel environment if not done.
|
67 |
+
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
|
68 |
+
):
|
69 |
+
paddle.distributed.init_parallel_env()
|
70 |
+
|
71 |
+
loader = paddle.io.DataLoader(
|
72 |
+
eval_dataset,
|
73 |
+
batch_size=1,
|
74 |
+
drop_last=False,
|
75 |
+
num_workers=num_workers,
|
76 |
+
return_list=True, )
|
77 |
+
|
78 |
+
total_iters = len(loader)
|
79 |
+
# Get metric instances and data saving
|
80 |
+
metrics_ins = {}
|
81 |
+
metrics_data = {}
|
82 |
+
if isinstance(metrics, str):
|
83 |
+
metrics = [metrics]
|
84 |
+
elif not isinstance(metrics, list):
|
85 |
+
metrics = ['sad']
|
86 |
+
for key in metrics:
|
87 |
+
key = key.lower()
|
88 |
+
metrics_ins[key] = metrics_class_dict[key]()
|
89 |
+
metrics_data[key] = None
|
90 |
+
|
91 |
+
if print_detail:
|
92 |
+
logger.info("Start evaluating (total_samples: {}, total_iters: {})...".
|
93 |
+
format(len(eval_dataset), total_iters))
|
94 |
+
progbar_val = progbar.Progbar(
|
95 |
+
target=total_iters, verbose=1 if nranks < 2 else 2)
|
96 |
+
reader_cost_averager = TimeAverager()
|
97 |
+
batch_cost_averager = TimeAverager()
|
98 |
+
batch_start = time.time()
|
99 |
+
|
100 |
+
img_name = ''
|
101 |
+
i = 0
|
102 |
+
with paddle.no_grad():
|
103 |
+
for iter, data in enumerate(loader):
|
104 |
+
reader_cost_averager.record(time.time() - batch_start)
|
105 |
+
alpha_pred = model(data)
|
106 |
+
|
107 |
+
alpha_pred = reverse_transform(alpha_pred, data['trans_info'])
|
108 |
+
alpha_pred = alpha_pred.numpy()
|
109 |
+
|
110 |
+
alpha_gt = data['alpha'].numpy() * 255
|
111 |
+
trimap = data.get('ori_trimap')
|
112 |
+
if trimap is not None:
|
113 |
+
trimap = trimap.numpy().astype('uint8')
|
114 |
+
alpha_pred = np.round(alpha_pred * 255)
|
115 |
+
for key in metrics_ins.keys():
|
116 |
+
metrics_data[key] = metrics_ins[key].update(alpha_pred,
|
117 |
+
alpha_gt, trimap)
|
118 |
+
|
119 |
+
if save_results:
|
120 |
+
alpha_pred_one = alpha_pred[0].squeeze()
|
121 |
+
if trimap is not None:
|
122 |
+
trimap = trimap.squeeze().astype('uint8')
|
123 |
+
alpha_pred_one[trimap == 255] = 255
|
124 |
+
alpha_pred_one[trimap == 0] = 0
|
125 |
+
|
126 |
+
save_name = data['img_name'][0]
|
127 |
+
name, ext = os.path.splitext(save_name)
|
128 |
+
if save_name == img_name:
|
129 |
+
save_name = name + '_' + str(i) + ext
|
130 |
+
i += 1
|
131 |
+
else:
|
132 |
+
img_name = save_name
|
133 |
+
save_name = name + '_' + str(i) + ext
|
134 |
+
i = 1
|
135 |
+
|
136 |
+
save_alpha_pred(alpha_pred_one,
|
137 |
+
os.path.join(save_dir, save_name))
|
138 |
+
|
139 |
+
batch_cost_averager.record(
|
140 |
+
time.time() - batch_start, num_samples=len(alpha_gt))
|
141 |
+
batch_cost = batch_cost_averager.get_average()
|
142 |
+
reader_cost = reader_cost_averager.get_average()
|
143 |
+
|
144 |
+
if local_rank == 0 and print_detail:
|
145 |
+
show_list = [(k, v) for k, v in metrics_data.items()]
|
146 |
+
show_list = show_list + [('batch_cost', batch_cost),
|
147 |
+
('reader cost', reader_cost)]
|
148 |
+
progbar_val.update(iter + 1, show_list)
|
149 |
+
|
150 |
+
reader_cost_averager.reset()
|
151 |
+
batch_cost_averager.reset()
|
152 |
+
batch_start = time.time()
|
153 |
+
|
154 |
+
for key in metrics_ins.keys():
|
155 |
+
metrics_data[key] = metrics_ins[key].evaluate()
|
156 |
+
log_str = '[EVAL] '
|
157 |
+
for key, value in metrics_data.items():
|
158 |
+
log_str = log_str + key + ': {:.4f}, '.format(value)
|
159 |
+
log_str = log_str[:-2]
|
160 |
+
|
161 |
+
logger.info(log_str)
|
162 |
+
return metrics_data
|
ppmatting/core/val_ml.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
|
17 |
+
import cv2
|
18 |
+
import numpy as np
|
19 |
+
import time
|
20 |
+
import paddle
|
21 |
+
import paddle.nn.functional as F
|
22 |
+
from paddleseg.utils import TimeAverager, calculate_eta, logger, progbar
|
23 |
+
|
24 |
+
from ppmatting.metrics import metric
|
25 |
+
from pymatting.util.util import load_image, save_image, stack_images
|
26 |
+
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
|
27 |
+
|
28 |
+
np.set_printoptions(suppress=True)
|
29 |
+
|
30 |
+
|
31 |
+
def save_alpha_pred(alpha, path):
|
32 |
+
"""
|
33 |
+
The value of alpha is range [0, 1], shape should be [h,w]
|
34 |
+
"""
|
35 |
+
dirname = os.path.dirname(path)
|
36 |
+
if not os.path.exists(dirname):
|
37 |
+
os.makedirs(dirname)
|
38 |
+
|
39 |
+
alpha = (alpha).astype('uint8')
|
40 |
+
cv2.imwrite(path, alpha)
|
41 |
+
|
42 |
+
|
43 |
+
def reverse_transform(alpha, trans_info):
|
44 |
+
"""recover pred to origin shape"""
|
45 |
+
for item in trans_info[::-1]:
|
46 |
+
if item[0][0] == 'resize':
|
47 |
+
h, w = item[1][0].numpy()[0], item[1][1].numpy()[0]
|
48 |
+
alpha = cv2.resize(alpha, dsize=(w, h))
|
49 |
+
elif item[0][0] == 'padding':
|
50 |
+
h, w = item[1][0].numpy()[0], item[1][1].numpy()[0]
|
51 |
+
alpha = alpha[0:h, 0:w]
|
52 |
+
else:
|
53 |
+
raise Exception("Unexpected info '{}' in im_info".format(item[0]))
|
54 |
+
return alpha
|
55 |
+
|
56 |
+
|
57 |
+
def evaluate_ml(model,
|
58 |
+
eval_dataset,
|
59 |
+
num_workers=0,
|
60 |
+
print_detail=True,
|
61 |
+
save_dir='output/results',
|
62 |
+
save_results=True):
|
63 |
+
|
64 |
+
loader = paddle.io.DataLoader(
|
65 |
+
eval_dataset,
|
66 |
+
batch_size=1,
|
67 |
+
drop_last=False,
|
68 |
+
num_workers=num_workers,
|
69 |
+
return_list=True, )
|
70 |
+
|
71 |
+
total_iters = len(loader)
|
72 |
+
mse_metric = metric.MSE()
|
73 |
+
sad_metric = metric.SAD()
|
74 |
+
grad_metric = metric.Grad()
|
75 |
+
conn_metric = metric.Conn()
|
76 |
+
|
77 |
+
if print_detail:
|
78 |
+
logger.info("Start evaluating (total_samples: {}, total_iters: {})...".
|
79 |
+
format(len(eval_dataset), total_iters))
|
80 |
+
progbar_val = progbar.Progbar(target=total_iters, verbose=1)
|
81 |
+
reader_cost_averager = TimeAverager()
|
82 |
+
batch_cost_averager = TimeAverager()
|
83 |
+
batch_start = time.time()
|
84 |
+
|
85 |
+
img_name = ''
|
86 |
+
i = 0
|
87 |
+
ignore_cnt = 0
|
88 |
+
for iter, data in enumerate(loader):
|
89 |
+
|
90 |
+
reader_cost_averager.record(time.time() - batch_start)
|
91 |
+
|
92 |
+
image_rgb_chw = data['img'].numpy()[0]
|
93 |
+
image_rgb_hwc = np.transpose(image_rgb_chw, (1, 2, 0))
|
94 |
+
trimap = data['trimap'].numpy().squeeze() / 255.0
|
95 |
+
image = image_rgb_hwc * 0.5 + 0.5 # reverse normalize (x/255 - mean) / std
|
96 |
+
|
97 |
+
is_fg = trimap >= 0.9
|
98 |
+
is_bg = trimap <= 0.1
|
99 |
+
|
100 |
+
if is_fg.sum() == 0 or is_bg.sum() == 0:
|
101 |
+
ignore_cnt += 1
|
102 |
+
logger.info(str(iter))
|
103 |
+
continue
|
104 |
+
|
105 |
+
alpha_pred = model(image, trimap)
|
106 |
+
|
107 |
+
alpha_pred = reverse_transform(alpha_pred, data['trans_info'])
|
108 |
+
|
109 |
+
alpha_gt = data['alpha'].numpy().squeeze() * 255
|
110 |
+
|
111 |
+
trimap = data['ori_trimap'].numpy().squeeze()
|
112 |
+
|
113 |
+
alpha_pred = np.round(alpha_pred * 255)
|
114 |
+
mse = mse_metric.update(alpha_pred, alpha_gt, trimap)
|
115 |
+
sad = sad_metric.update(alpha_pred, alpha_gt, trimap)
|
116 |
+
grad = grad_metric.update(alpha_pred, alpha_gt, trimap)
|
117 |
+
conn = conn_metric.update(alpha_pred, alpha_gt, trimap)
|
118 |
+
|
119 |
+
if sad > 1000:
|
120 |
+
print(data['img_name'][0])
|
121 |
+
|
122 |
+
if save_results:
|
123 |
+
alpha_pred_one = alpha_pred
|
124 |
+
alpha_pred_one[trimap == 255] = 255
|
125 |
+
alpha_pred_one[trimap == 0] = 0
|
126 |
+
|
127 |
+
save_name = data['img_name'][0]
|
128 |
+
name, ext = os.path.splitext(save_name)
|
129 |
+
if save_name == img_name:
|
130 |
+
save_name = name + '_' + str(i) + ext
|
131 |
+
i += 1
|
132 |
+
else:
|
133 |
+
img_name = save_name
|
134 |
+
save_name = name + '_' + str(0) + ext
|
135 |
+
i = 1
|
136 |
+
save_alpha_pred(alpha_pred_one, os.path.join(save_dir, save_name))
|
137 |
+
|
138 |
+
batch_cost_averager.record(
|
139 |
+
time.time() - batch_start, num_samples=len(alpha_gt))
|
140 |
+
batch_cost = batch_cost_averager.get_average()
|
141 |
+
reader_cost = reader_cost_averager.get_average()
|
142 |
+
|
143 |
+
if print_detail:
|
144 |
+
progbar_val.update(iter + 1,
|
145 |
+
[('SAD', sad), ('MSE', mse), ('Grad', grad),
|
146 |
+
('Conn', conn), ('batch_cost', batch_cost),
|
147 |
+
('reader cost', reader_cost)])
|
148 |
+
|
149 |
+
reader_cost_averager.reset()
|
150 |
+
batch_cost_averager.reset()
|
151 |
+
batch_start = time.time()
|
152 |
+
|
153 |
+
mse = mse_metric.evaluate()
|
154 |
+
sad = sad_metric.evaluate()
|
155 |
+
grad = grad_metric.evaluate()
|
156 |
+
conn = conn_metric.evaluate()
|
157 |
+
|
158 |
+
logger.info('[EVAL] SAD: {:.4f}, MSE: {:.4f}, Grad: {:.4f}, Conn: {:.4f}'.
|
159 |
+
format(sad, mse, grad, conn))
|
160 |
+
logger.info('{}'.format(ignore_cnt))
|
161 |
+
|
162 |
+
return sad, mse, grad, conn
|
ppmatting/datasets/__init__.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .matting_dataset import MattingDataset
|
16 |
+
from .composition_1k import Composition1K
|
17 |
+
from .distinctions_646 import Distinctions646
|
ppmatting/datasets/composition_1k.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import math
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
import numpy as np
|
20 |
+
import random
|
21 |
+
import paddle
|
22 |
+
from paddleseg.cvlibs import manager
|
23 |
+
|
24 |
+
import ppmatting.transforms as T
|
25 |
+
from ppmatting.datasets.matting_dataset import MattingDataset
|
26 |
+
|
27 |
+
|
28 |
+
@manager.DATASETS.add_component
|
29 |
+
class Composition1K(MattingDataset):
|
30 |
+
def __init__(self, **kwargs):
|
31 |
+
super().__init__(**kwargs)
|
ppmatting/datasets/distinctions_646.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import math
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
import numpy as np
|
20 |
+
import random
|
21 |
+
import paddle
|
22 |
+
from paddleseg.cvlibs import manager
|
23 |
+
|
24 |
+
import ppmatting.transforms as T
|
25 |
+
from ppmatting.datasets.matting_dataset import MattingDataset
|
26 |
+
|
27 |
+
|
28 |
+
@manager.DATASETS.add_component
|
29 |
+
class Distinctions646(MattingDataset):
|
30 |
+
def __init__(self, **kwargs):
|
31 |
+
super().__init__(**kwargs)
|
ppmatting/datasets/matting_dataset.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import math
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
import numpy as np
|
20 |
+
import random
|
21 |
+
import paddle
|
22 |
+
from paddleseg.cvlibs import manager
|
23 |
+
|
24 |
+
import ppmatting.transforms as T
|
25 |
+
|
26 |
+
|
27 |
+
@manager.DATASETS.add_component
|
28 |
+
class MattingDataset(paddle.io.Dataset):
|
29 |
+
"""
|
30 |
+
Pass in a dataset that conforms to the format.
|
31 |
+
matting_dataset/
|
32 |
+
|--bg/
|
33 |
+
|
|
34 |
+
|--train/
|
35 |
+
| |--fg/
|
36 |
+
| |--alpha/
|
37 |
+
|
|
38 |
+
|--val/
|
39 |
+
| |--fg/
|
40 |
+
| |--alpha/
|
41 |
+
| |--trimap/ (if existing)
|
42 |
+
|
|
43 |
+
|--train.txt
|
44 |
+
|
|
45 |
+
|--val.txt
|
46 |
+
See README.md for more information of dataset.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
dataset_root(str): The root path of dataset.
|
50 |
+
transforms(list): Transforms for image.
|
51 |
+
mode (str, optional): which part of dataset to use. it is one of ('train', 'val', 'trainval'). Default: 'train'.
|
52 |
+
train_file (str|list, optional): File list is used to train. It should be `foreground_image.png background_image.png`
|
53 |
+
or `foreground_image.png`. It shold be provided if mode equal to 'train'. Default: None.
|
54 |
+
val_file (str|list, optional): File list is used to evaluation. It should be `foreground_image.png background_image.png`
|
55 |
+
or `foreground_image.png` or ``foreground_image.png background_image.png trimap_image.png`.
|
56 |
+
It shold be provided if mode equal to 'val'. Default: None.
|
57 |
+
get_trimap (bool, optional): Whether to get triamp. Default: True.
|
58 |
+
separator (str, optional): The separator of train_file or val_file. If file name contains ' ', '|' may be perfect. Default: ' '.
|
59 |
+
key_del (tuple|list, optional): The key which is not need will be delete to accellect data reader. Default: None.
|
60 |
+
if_rssn (bool, optional): Whether to use RSSN while Compositing image. Including denoise and blur. Default: False.
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(self,
|
64 |
+
dataset_root,
|
65 |
+
transforms,
|
66 |
+
mode='train',
|
67 |
+
train_file=None,
|
68 |
+
val_file=None,
|
69 |
+
get_trimap=True,
|
70 |
+
separator=' ',
|
71 |
+
key_del=None,
|
72 |
+
if_rssn=False):
|
73 |
+
super().__init__()
|
74 |
+
self.dataset_root = dataset_root
|
75 |
+
self.transforms = T.Compose(transforms)
|
76 |
+
self.mode = mode
|
77 |
+
self.get_trimap = get_trimap
|
78 |
+
self.separator = separator
|
79 |
+
self.key_del = key_del
|
80 |
+
self.if_rssn = if_rssn
|
81 |
+
|
82 |
+
# check file
|
83 |
+
if mode == 'train' or mode == 'trainval':
|
84 |
+
if train_file is None:
|
85 |
+
raise ValueError(
|
86 |
+
"When `mode` is 'train' or 'trainval', `train_file must be provided!"
|
87 |
+
)
|
88 |
+
if isinstance(train_file, str):
|
89 |
+
train_file = [train_file]
|
90 |
+
file_list = train_file
|
91 |
+
|
92 |
+
if mode == 'val' or mode == 'trainval':
|
93 |
+
if val_file is None:
|
94 |
+
raise ValueError(
|
95 |
+
"When `mode` is 'val' or 'trainval', `val_file must be provided!"
|
96 |
+
)
|
97 |
+
if isinstance(val_file, str):
|
98 |
+
val_file = [val_file]
|
99 |
+
file_list = val_file
|
100 |
+
|
101 |
+
if mode == 'trainval':
|
102 |
+
file_list = train_file + val_file
|
103 |
+
|
104 |
+
# read file
|
105 |
+
self.fg_bg_list = []
|
106 |
+
for file in file_list:
|
107 |
+
file = os.path.join(dataset_root, file)
|
108 |
+
with open(file, 'r') as f:
|
109 |
+
lines = f.readlines()
|
110 |
+
for line in lines:
|
111 |
+
line = line.strip()
|
112 |
+
self.fg_bg_list.append(line)
|
113 |
+
if mode != 'val':
|
114 |
+
random.shuffle(self.fg_bg_list)
|
115 |
+
|
116 |
+
def __getitem__(self, idx):
|
117 |
+
data = {}
|
118 |
+
fg_bg_file = self.fg_bg_list[idx]
|
119 |
+
fg_bg_file = fg_bg_file.split(self.separator)
|
120 |
+
data['img_name'] = fg_bg_file[0] # using in save prediction results
|
121 |
+
fg_file = os.path.join(self.dataset_root, fg_bg_file[0])
|
122 |
+
alpha_file = fg_file.replace('/fg', '/alpha')
|
123 |
+
fg = cv2.imread(fg_file)
|
124 |
+
alpha = cv2.imread(alpha_file, 0)
|
125 |
+
data['alpha'] = alpha
|
126 |
+
data['gt_fields'] = []
|
127 |
+
|
128 |
+
# line is: fg [bg] [trimap]
|
129 |
+
if len(fg_bg_file) >= 2:
|
130 |
+
bg_file = os.path.join(self.dataset_root, fg_bg_file[1])
|
131 |
+
bg = cv2.imread(bg_file)
|
132 |
+
data['img'], data['fg'], data['bg'] = self.composite(fg, alpha, bg)
|
133 |
+
if self.mode in ['train', 'trainval']:
|
134 |
+
data['gt_fields'].append('fg')
|
135 |
+
data['gt_fields'].append('bg')
|
136 |
+
data['gt_fields'].append('alpha')
|
137 |
+
if len(fg_bg_file) == 3 and self.get_trimap:
|
138 |
+
if self.mode == 'val':
|
139 |
+
trimap_path = os.path.join(self.dataset_root, fg_bg_file[2])
|
140 |
+
if os.path.exists(trimap_path):
|
141 |
+
data['trimap'] = trimap_path
|
142 |
+
data['gt_fields'].append('trimap')
|
143 |
+
data['ori_trimap'] = cv2.imread(trimap_path, 0)
|
144 |
+
else:
|
145 |
+
raise FileNotFoundError(
|
146 |
+
'trimap is not Found: {}'.format(fg_bg_file[2]))
|
147 |
+
else:
|
148 |
+
data['img'] = fg
|
149 |
+
if self.mode in ['train', 'trainval']:
|
150 |
+
data['fg'] = fg.copy()
|
151 |
+
data['bg'] = fg.copy()
|
152 |
+
data['gt_fields'].append('fg')
|
153 |
+
data['gt_fields'].append('bg')
|
154 |
+
data['gt_fields'].append('alpha')
|
155 |
+
|
156 |
+
data['trans_info'] = [] # Record shape change information
|
157 |
+
|
158 |
+
# Generate trimap from alpha if no trimap file provided
|
159 |
+
if self.get_trimap:
|
160 |
+
if 'trimap' not in data:
|
161 |
+
data['trimap'] = self.gen_trimap(
|
162 |
+
data['alpha'], mode=self.mode).astype('float32')
|
163 |
+
data['gt_fields'].append('trimap')
|
164 |
+
if self.mode == 'val':
|
165 |
+
data['ori_trimap'] = data['trimap'].copy()
|
166 |
+
|
167 |
+
# Delete key which is not need
|
168 |
+
if self.key_del is not None:
|
169 |
+
for key in self.key_del:
|
170 |
+
if key in data.keys():
|
171 |
+
data.pop(key)
|
172 |
+
if key in data['gt_fields']:
|
173 |
+
data['gt_fields'].remove(key)
|
174 |
+
data = self.transforms(data)
|
175 |
+
|
176 |
+
# When evaluation, gt should not be transforms.
|
177 |
+
if self.mode == 'val':
|
178 |
+
data['gt_fields'].append('alpha')
|
179 |
+
|
180 |
+
data['img'] = data['img'].astype('float32')
|
181 |
+
for key in data.get('gt_fields', []):
|
182 |
+
data[key] = data[key].astype('float32')
|
183 |
+
|
184 |
+
if 'trimap' in data:
|
185 |
+
data['trimap'] = data['trimap'][np.newaxis, :, :]
|
186 |
+
if 'ori_trimap' in data:
|
187 |
+
data['ori_trimap'] = data['ori_trimap'][np.newaxis, :, :]
|
188 |
+
|
189 |
+
data['alpha'] = data['alpha'][np.newaxis, :, :] / 255.
|
190 |
+
|
191 |
+
return data
|
192 |
+
|
193 |
+
def __len__(self):
|
194 |
+
return len(self.fg_bg_list)
|
195 |
+
|
196 |
+
def composite(self, fg, alpha, ori_bg):
|
197 |
+
if self.if_rssn:
|
198 |
+
if np.random.rand() < 0.5:
|
199 |
+
fg = cv2.fastNlMeansDenoisingColored(fg, None, 3, 3, 7, 21)
|
200 |
+
ori_bg = cv2.fastNlMeansDenoisingColored(ori_bg, None, 3, 3, 7,
|
201 |
+
21)
|
202 |
+
if np.random.rand() < 0.5:
|
203 |
+
radius = np.random.choice([19, 29, 39, 49, 59])
|
204 |
+
ori_bg = cv2.GaussianBlur(ori_bg, (radius, radius), 0, 0)
|
205 |
+
fg_h, fg_w = fg.shape[:2]
|
206 |
+
ori_bg_h, ori_bg_w = ori_bg.shape[:2]
|
207 |
+
|
208 |
+
wratio = fg_w / ori_bg_w
|
209 |
+
hratio = fg_h / ori_bg_h
|
210 |
+
ratio = wratio if wratio > hratio else hratio
|
211 |
+
|
212 |
+
# Resize ori_bg if it is smaller than fg.
|
213 |
+
if ratio > 1:
|
214 |
+
resize_h = math.ceil(ori_bg_h * ratio)
|
215 |
+
resize_w = math.ceil(ori_bg_w * ratio)
|
216 |
+
bg = cv2.resize(
|
217 |
+
ori_bg, (resize_w, resize_h), interpolation=cv2.INTER_LINEAR)
|
218 |
+
else:
|
219 |
+
bg = ori_bg
|
220 |
+
|
221 |
+
bg = bg[0:fg_h, 0:fg_w, :]
|
222 |
+
alpha = alpha / 255
|
223 |
+
alpha = np.expand_dims(alpha, axis=2)
|
224 |
+
image = alpha * fg + (1 - alpha) * bg
|
225 |
+
image = image.astype(np.uint8)
|
226 |
+
return image, fg, bg
|
227 |
+
|
228 |
+
@staticmethod
|
229 |
+
def gen_trimap(alpha, mode='train', eval_kernel=7):
|
230 |
+
if mode == 'train':
|
231 |
+
k_size = random.choice(range(2, 5))
|
232 |
+
iterations = np.random.randint(5, 15)
|
233 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
|
234 |
+
(k_size, k_size))
|
235 |
+
dilated = cv2.dilate(alpha, kernel, iterations=iterations)
|
236 |
+
eroded = cv2.erode(alpha, kernel, iterations=iterations)
|
237 |
+
trimap = np.zeros(alpha.shape)
|
238 |
+
trimap.fill(128)
|
239 |
+
trimap[eroded > 254.5] = 255
|
240 |
+
trimap[dilated < 0.5] = 0
|
241 |
+
else:
|
242 |
+
k_size = eval_kernel
|
243 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
|
244 |
+
(k_size, k_size))
|
245 |
+
dilated = cv2.dilate(alpha, kernel)
|
246 |
+
trimap = np.zeros(alpha.shape)
|
247 |
+
trimap.fill(128)
|
248 |
+
trimap[alpha >= 250] = 255
|
249 |
+
trimap[dilated <= 5] = 0
|
250 |
+
|
251 |
+
return trimap
|
ppmatting/metrics/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .metric import MSE, SAD, Grad, Conn
|
2 |
+
|
3 |
+
metrics_class_dict = {'sad': SAD, 'mse': MSE, 'grad': Grad, 'conn': Conn}
|
ppmatting/metrics/metric.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Grad and Conn is refer to https://github.com/yucornetto/MGMatting/blob/main/code-base/utils/evaluate.py
|
16 |
+
# Output of `Grad` is sightly different from the MATLAB version provided by Adobe (less than 0.1%)
|
17 |
+
# Output of `Conn` is smaller than the MATLAB version (~5%, maybe MATLAB has a different algorithm)
|
18 |
+
# So do not report results calculated by these functions in your paper.
|
19 |
+
# Evaluate your inference with the MATLAB file `DIM_evaluation_code/evaluate.m`.
|
20 |
+
|
21 |
+
import cv2
|
22 |
+
import numpy as np
|
23 |
+
from scipy.ndimage import convolve
|
24 |
+
from scipy.special import gamma
|
25 |
+
from skimage.measure import label
|
26 |
+
|
27 |
+
|
28 |
+
class MSE:
|
29 |
+
"""
|
30 |
+
Only calculate the unknown region if trimap provided.
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(self):
|
34 |
+
self.mse_diffs = 0
|
35 |
+
self.count = 0
|
36 |
+
|
37 |
+
def update(self, pred, gt, trimap=None):
|
38 |
+
"""
|
39 |
+
update metric.
|
40 |
+
Args:
|
41 |
+
pred (np.ndarray): The value range is [0., 255.].
|
42 |
+
gt (np.ndarray): The value range is [0, 255].
|
43 |
+
trimap (np.ndarray, optional) The value is in {0, 128, 255}. Default: None.
|
44 |
+
"""
|
45 |
+
if trimap is None:
|
46 |
+
trimap = np.ones_like(gt) * 128
|
47 |
+
if not (pred.shape == gt.shape == trimap.shape):
|
48 |
+
raise ValueError(
|
49 |
+
'The shape of `pred`, `gt` and `trimap` should be equal. '
|
50 |
+
'but they are {}, {} and {}'.format(pred.shape, gt.shape,
|
51 |
+
trimap.shape))
|
52 |
+
pred[trimap == 0] = 0
|
53 |
+
pred[trimap == 255] = 255
|
54 |
+
|
55 |
+
mask = trimap == 128
|
56 |
+
pixels = float(mask.sum())
|
57 |
+
pred = pred / 255.
|
58 |
+
gt = gt / 255.
|
59 |
+
diff = (pred - gt) * mask
|
60 |
+
mse_diff = (diff**2).sum() / pixels if pixels > 0 else 0
|
61 |
+
|
62 |
+
self.mse_diffs += mse_diff
|
63 |
+
self.count += 1
|
64 |
+
|
65 |
+
return mse_diff
|
66 |
+
|
67 |
+
def evaluate(self):
|
68 |
+
mse = self.mse_diffs / self.count if self.count > 0 else 0
|
69 |
+
return mse
|
70 |
+
|
71 |
+
|
72 |
+
class SAD:
|
73 |
+
"""
|
74 |
+
Only calculate the unknown region if trimap provided.
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(self):
|
78 |
+
self.sad_diffs = 0
|
79 |
+
self.count = 0
|
80 |
+
|
81 |
+
def update(self, pred, gt, trimap=None):
|
82 |
+
"""
|
83 |
+
update metric.
|
84 |
+
Args:
|
85 |
+
pred (np.ndarray): The value range is [0., 255.].
|
86 |
+
gt (np.ndarray): The value range is [0., 255.].
|
87 |
+
trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None.
|
88 |
+
"""
|
89 |
+
if trimap is None:
|
90 |
+
trimap = np.ones_like(gt) * 128
|
91 |
+
if not (pred.shape == gt.shape == trimap.shape):
|
92 |
+
raise ValueError(
|
93 |
+
'The shape of `pred`, `gt` and `trimap` should be equal. '
|
94 |
+
'but they are {}, {} and {}'.format(pred.shape, gt.shape,
|
95 |
+
trimap.shape))
|
96 |
+
pred[trimap == 0] = 0
|
97 |
+
pred[trimap == 255] = 255
|
98 |
+
|
99 |
+
mask = trimap == 128
|
100 |
+
pred = pred / 255.
|
101 |
+
gt = gt / 255.
|
102 |
+
diff = (pred - gt) * mask
|
103 |
+
sad_diff = (np.abs(diff)).sum()
|
104 |
+
|
105 |
+
sad_diff /= 1000
|
106 |
+
self.sad_diffs += sad_diff
|
107 |
+
self.count += 1
|
108 |
+
|
109 |
+
return sad_diff
|
110 |
+
|
111 |
+
def evaluate(self):
|
112 |
+
sad = self.sad_diffs / self.count if self.count > 0 else 0
|
113 |
+
return sad
|
114 |
+
|
115 |
+
|
116 |
+
class Grad:
|
117 |
+
"""
|
118 |
+
Only calculate the unknown region if trimap provided.
|
119 |
+
Refer to: https://github.com/open-mlab/mmediting/blob/master/mmedit/core/evaluation/metrics.py
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(self):
|
123 |
+
self.grad_diffs = 0
|
124 |
+
self.count = 0
|
125 |
+
|
126 |
+
def gaussian(self, x, sigma):
|
127 |
+
return np.exp(-x**2 / (2 * sigma**2)) / (sigma * np.sqrt(2 * np.pi))
|
128 |
+
|
129 |
+
def dgaussian(self, x, sigma):
|
130 |
+
return -x * self.gaussian(x, sigma) / sigma**2
|
131 |
+
|
132 |
+
def gauss_filter(self, sigma, epsilon=1e-2):
|
133 |
+
half_size = np.ceil(
|
134 |
+
sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon)))
|
135 |
+
size = int(2 * half_size + 1)
|
136 |
+
|
137 |
+
# create filter in x axis
|
138 |
+
filter_x = np.zeros((size, size))
|
139 |
+
for i in range(size):
|
140 |
+
for j in range(size):
|
141 |
+
filter_x[i, j] = self.gaussian(
|
142 |
+
i - half_size, sigma) * self.dgaussian(j - half_size, sigma)
|
143 |
+
|
144 |
+
# normalize filter
|
145 |
+
norm = np.sqrt((filter_x**2).sum())
|
146 |
+
filter_x = filter_x / norm
|
147 |
+
filter_y = np.transpose(filter_x)
|
148 |
+
|
149 |
+
return filter_x, filter_y
|
150 |
+
|
151 |
+
def gauss_gradient(self, img, sigma):
|
152 |
+
filter_x, filter_y = self.gauss_filter(sigma)
|
153 |
+
img_filtered_x = cv2.filter2D(
|
154 |
+
img, -1, filter_x, borderType=cv2.BORDER_REPLICATE)
|
155 |
+
img_filtered_y = cv2.filter2D(
|
156 |
+
img, -1, filter_y, borderType=cv2.BORDER_REPLICATE)
|
157 |
+
return np.sqrt(img_filtered_x**2 + img_filtered_y**2)
|
158 |
+
|
159 |
+
def update(self, pred, gt, trimap=None, sigma=1.4):
|
160 |
+
"""
|
161 |
+
update metric.
|
162 |
+
Args:
|
163 |
+
pred (np.ndarray): The value range is [0., 1.].
|
164 |
+
gt (np.ndarray): The value range is [0, 255].
|
165 |
+
trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None.
|
166 |
+
sigma (float, optional): Standard deviation of the gaussian kernel. Default: 1.4.
|
167 |
+
"""
|
168 |
+
if trimap is None:
|
169 |
+
trimap = np.ones_like(gt) * 128
|
170 |
+
if not (pred.shape == gt.shape == trimap.shape):
|
171 |
+
raise ValueError(
|
172 |
+
'The shape of `pred`, `gt` and `trimap` should be equal. '
|
173 |
+
'but they are {}, {} and {}'.format(pred.shape, gt.shape,
|
174 |
+
trimap.shape))
|
175 |
+
pred[trimap == 0] = 0
|
176 |
+
pred[trimap == 255] = 255
|
177 |
+
|
178 |
+
gt = gt.squeeze()
|
179 |
+
pred = pred.squeeze()
|
180 |
+
gt = gt.astype(np.float64)
|
181 |
+
pred = pred.astype(np.float64)
|
182 |
+
gt_normed = np.zeros_like(gt)
|
183 |
+
pred_normed = np.zeros_like(pred)
|
184 |
+
cv2.normalize(gt, gt_normed, 1., 0., cv2.NORM_MINMAX)
|
185 |
+
cv2.normalize(pred, pred_normed, 1., 0., cv2.NORM_MINMAX)
|
186 |
+
|
187 |
+
gt_grad = self.gauss_gradient(gt_normed, sigma).astype(np.float32)
|
188 |
+
pred_grad = self.gauss_gradient(pred_normed, sigma).astype(np.float32)
|
189 |
+
|
190 |
+
grad_diff = ((gt_grad - pred_grad)**2 * (trimap == 128)).sum()
|
191 |
+
|
192 |
+
grad_diff /= 1000
|
193 |
+
self.grad_diffs += grad_diff
|
194 |
+
self.count += 1
|
195 |
+
|
196 |
+
return grad_diff
|
197 |
+
|
198 |
+
def evaluate(self):
|
199 |
+
grad = self.grad_diffs / self.count if self.count > 0 else 0
|
200 |
+
return grad
|
201 |
+
|
202 |
+
|
203 |
+
class Conn:
|
204 |
+
"""
|
205 |
+
Only calculate the unknown region if trimap provided.
|
206 |
+
Refer to: Refer to: https://github.com/open-mlab/mmediting/blob/master/mmedit/core/evaluation/metrics.py
|
207 |
+
"""
|
208 |
+
|
209 |
+
def __init__(self):
|
210 |
+
self.conn_diffs = 0
|
211 |
+
self.count = 0
|
212 |
+
|
213 |
+
def update(self, pred, gt, trimap=None, step=0.1):
|
214 |
+
"""
|
215 |
+
update metric.
|
216 |
+
Args:
|
217 |
+
pred (np.ndarray): The value range is [0., 1.].
|
218 |
+
gt (np.ndarray): The value range is [0, 255].
|
219 |
+
trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None.
|
220 |
+
step (float, optional): Step of threshold when computing intersection between
|
221 |
+
`gt` and `pred`. Default: 0.1.
|
222 |
+
"""
|
223 |
+
if trimap is None:
|
224 |
+
trimap = np.ones_like(gt) * 128
|
225 |
+
if not (pred.shape == gt.shape == trimap.shape):
|
226 |
+
raise ValueError(
|
227 |
+
'The shape of `pred`, `gt` and `trimap` should be equal. '
|
228 |
+
'but they are {}, {} and {}'.format(pred.shape, gt.shape,
|
229 |
+
trimap.shape))
|
230 |
+
pred[trimap == 0] = 0
|
231 |
+
pred[trimap == 255] = 255
|
232 |
+
|
233 |
+
gt = gt.squeeze()
|
234 |
+
pred = pred.squeeze()
|
235 |
+
gt = gt.astype(np.float32) / 255
|
236 |
+
pred = pred.astype(np.float32) / 255
|
237 |
+
|
238 |
+
thresh_steps = np.arange(0, 1 + step, step)
|
239 |
+
round_down_map = -np.ones_like(gt)
|
240 |
+
for i in range(1, len(thresh_steps)):
|
241 |
+
gt_thresh = gt >= thresh_steps[i]
|
242 |
+
pred_thresh = pred >= thresh_steps[i]
|
243 |
+
intersection = (gt_thresh & pred_thresh).astype(np.uint8)
|
244 |
+
|
245 |
+
# connected components
|
246 |
+
_, output, stats, _ = cv2.connectedComponentsWithStats(
|
247 |
+
intersection, connectivity=4)
|
248 |
+
# start from 1 in dim 0 to exclude background
|
249 |
+
size = stats[1:, -1]
|
250 |
+
|
251 |
+
# largest connected component of the intersection
|
252 |
+
omega = np.zeros_like(gt)
|
253 |
+
if len(size) != 0:
|
254 |
+
max_id = np.argmax(size)
|
255 |
+
# plus one to include background
|
256 |
+
omega[output == max_id + 1] = 1
|
257 |
+
|
258 |
+
mask = (round_down_map == -1) & (omega == 0)
|
259 |
+
round_down_map[mask] = thresh_steps[i - 1]
|
260 |
+
round_down_map[round_down_map == -1] = 1
|
261 |
+
|
262 |
+
gt_diff = gt - round_down_map
|
263 |
+
pred_diff = pred - round_down_map
|
264 |
+
# only calculate difference larger than or equal to 0.15
|
265 |
+
gt_phi = 1 - gt_diff * (gt_diff >= 0.15)
|
266 |
+
pred_phi = 1 - pred_diff * (pred_diff >= 0.15)
|
267 |
+
|
268 |
+
conn_diff = np.sum(np.abs(gt_phi - pred_phi) * (trimap == 128))
|
269 |
+
|
270 |
+
conn_diff /= 1000
|
271 |
+
self.conn_diffs += conn_diff
|
272 |
+
self.count += 1
|
273 |
+
|
274 |
+
return conn_diff
|
275 |
+
|
276 |
+
def evaluate(self):
|
277 |
+
conn = self.conn_diffs / self.count if self.count > 0 else 0
|
278 |
+
return conn
|
ppmatting/ml/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .methods import CloseFormMatting, KNNMatting, LearningBasedMatting, FastMatting, RandomWalksMatting
|
ppmatting/ml/methods.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import pymatting
|
16 |
+
from paddleseg.cvlibs import manager
|
17 |
+
|
18 |
+
|
19 |
+
class BaseMLMatting(object):
|
20 |
+
def __init__(self, alpha_estimator, **kargs):
|
21 |
+
self.alpha_estimator = alpha_estimator
|
22 |
+
self.kargs = kargs
|
23 |
+
|
24 |
+
def __call__(self, image, trimap):
|
25 |
+
image = self.__to_float64(image)
|
26 |
+
trimap = self.__to_float64(trimap)
|
27 |
+
alpha_matte = self.alpha_estimator(image, trimap, **self.kargs)
|
28 |
+
return alpha_matte
|
29 |
+
|
30 |
+
def __to_float64(self, x):
|
31 |
+
x_dtype = x.dtype
|
32 |
+
assert x_dtype in ["float32", "float64"]
|
33 |
+
x = x.astype("float64")
|
34 |
+
return x
|
35 |
+
|
36 |
+
|
37 |
+
@manager.MODELS.add_component
|
38 |
+
class CloseFormMatting(BaseMLMatting):
|
39 |
+
def __init__(self, **kargs):
|
40 |
+
cf_alpha_estimator = pymatting.estimate_alpha_cf
|
41 |
+
super().__init__(cf_alpha_estimator, **kargs)
|
42 |
+
|
43 |
+
|
44 |
+
@manager.MODELS.add_component
|
45 |
+
class KNNMatting(BaseMLMatting):
|
46 |
+
def __init__(self, **kargs):
|
47 |
+
knn_alpha_estimator = pymatting.estimate_alpha_knn
|
48 |
+
super().__init__(knn_alpha_estimator, **kargs)
|
49 |
+
|
50 |
+
|
51 |
+
@manager.MODELS.add_component
|
52 |
+
class LearningBasedMatting(BaseMLMatting):
|
53 |
+
def __init__(self, **kargs):
|
54 |
+
lbdm_alpha_estimator = pymatting.estimate_alpha_lbdm
|
55 |
+
super().__init__(lbdm_alpha_estimator, **kargs)
|
56 |
+
|
57 |
+
|
58 |
+
@manager.MODELS.add_component
|
59 |
+
class FastMatting(BaseMLMatting):
|
60 |
+
def __init__(self, **kargs):
|
61 |
+
lkm_alpha_estimator = pymatting.estimate_alpha_lkm
|
62 |
+
super().__init__(lkm_alpha_estimator, **kargs)
|
63 |
+
|
64 |
+
|
65 |
+
@manager.MODELS.add_component
|
66 |
+
class RandomWalksMatting(BaseMLMatting):
|
67 |
+
def __init__(self, **kargs):
|
68 |
+
rw_alpha_estimator = pymatting.estimate_alpha_rw
|
69 |
+
super().__init__(rw_alpha_estimator, **kargs)
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
from pymatting.util.util import load_image, save_image, stack_images
|
74 |
+
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
|
75 |
+
import cv2
|
76 |
+
|
77 |
+
root = "/mnt/liuyi22/PaddlePaddle/PaddleSeg/Matting/data/examples/"
|
78 |
+
image_path = root + "lemur.png"
|
79 |
+
trimap_path = root + "lemur_trimap.png"
|
80 |
+
cutout_path = root + "lemur_cutout.png"
|
81 |
+
image = cv2.cvtColor(
|
82 |
+
cv2.imread(image_path).astype("float64"), cv2.COLOR_BGR2RGB) / 255.0
|
83 |
+
|
84 |
+
cv2.imwrite("image.png", (image * 255).astype('uint8'))
|
85 |
+
trimap = load_image(trimap_path, "GRAY")
|
86 |
+
print(image.shape, trimap.shape)
|
87 |
+
print(image.dtype, trimap.dtype)
|
88 |
+
cf = CloseFormMatting()
|
89 |
+
alpha = cf(image, trimap)
|
90 |
+
|
91 |
+
# alpha = pymatting.estimate_alpha_lkm(image, trimap)
|
92 |
+
|
93 |
+
foreground = estimate_foreground_ml(image, alpha)
|
94 |
+
|
95 |
+
cutout = stack_images(foreground, alpha)
|
96 |
+
|
97 |
+
save_image(cutout_path, cutout)
|
ppmatting/models/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .backbone import *
|
2 |
+
from .losses import *
|
3 |
+
from .modnet import MODNet
|
4 |
+
from .human_matting import HumanMatting
|
5 |
+
from .dim import DIM
|
6 |
+
from .ppmatting import PPMatting
|
7 |
+
from .gca import GCABaseline, GCA
|
ppmatting/models/backbone/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .mobilenet_v2 import *
|
2 |
+
from .hrnet import *
|
3 |
+
from .resnet_vd import *
|
4 |
+
from .vgg import *
|
5 |
+
from .gca_enc import *
|
ppmatting/models/backbone/gca_enc.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# The gca code was heavily based on https://github.com/Yaoyi-Li/GCA-Matting
|
16 |
+
# and https://github.com/open-mmlab/mmediting
|
17 |
+
|
18 |
+
import paddle
|
19 |
+
import paddle.nn as nn
|
20 |
+
import paddle.nn.functional as F
|
21 |
+
from paddleseg.cvlibs import manager, param_init
|
22 |
+
from paddleseg.utils import utils
|
23 |
+
|
24 |
+
from ppmatting.models.layers import GuidedCxtAtten
|
25 |
+
|
26 |
+
|
27 |
+
class ResNet_D(nn.Layer):
|
28 |
+
def __init__(self,
|
29 |
+
input_channels,
|
30 |
+
layers,
|
31 |
+
late_downsample=False,
|
32 |
+
pretrained=None):
|
33 |
+
|
34 |
+
super().__init__()
|
35 |
+
|
36 |
+
self.pretrained = pretrained
|
37 |
+
|
38 |
+
self._norm_layer = nn.BatchNorm
|
39 |
+
self.inplanes = 64
|
40 |
+
self.late_downsample = late_downsample
|
41 |
+
self.midplanes = 64 if late_downsample else 32
|
42 |
+
self.start_stride = [1, 2, 1, 2] if late_downsample else [2, 1, 2, 1]
|
43 |
+
self.conv1 = nn.utils.spectral_norm(
|
44 |
+
nn.Conv2D(
|
45 |
+
input_channels,
|
46 |
+
32,
|
47 |
+
kernel_size=3,
|
48 |
+
stride=self.start_stride[0],
|
49 |
+
padding=1,
|
50 |
+
bias_attr=False))
|
51 |
+
self.conv2 = nn.utils.spectral_norm(
|
52 |
+
nn.Conv2D(
|
53 |
+
32,
|
54 |
+
self.midplanes,
|
55 |
+
kernel_size=3,
|
56 |
+
stride=self.start_stride[1],
|
57 |
+
padding=1,
|
58 |
+
bias_attr=False))
|
59 |
+
self.conv3 = nn.utils.spectral_norm(
|
60 |
+
nn.Conv2D(
|
61 |
+
self.midplanes,
|
62 |
+
self.inplanes,
|
63 |
+
kernel_size=3,
|
64 |
+
stride=self.start_stride[2],
|
65 |
+
padding=1,
|
66 |
+
bias_attr=False))
|
67 |
+
self.bn1 = self._norm_layer(32)
|
68 |
+
self.bn2 = self._norm_layer(self.midplanes)
|
69 |
+
self.bn3 = self._norm_layer(self.inplanes)
|
70 |
+
self.activation = nn.ReLU()
|
71 |
+
self.layer1 = self._make_layer(
|
72 |
+
BasicBlock, 64, layers[0], stride=self.start_stride[3])
|
73 |
+
self.layer2 = self._make_layer(BasicBlock, 128, layers[1], stride=2)
|
74 |
+
self.layer3 = self._make_layer(BasicBlock, 256, layers[2], stride=2)
|
75 |
+
self.layer_bottleneck = self._make_layer(
|
76 |
+
BasicBlock, 512, layers[3], stride=2)
|
77 |
+
|
78 |
+
self.init_weight()
|
79 |
+
|
80 |
+
def _make_layer(self, block, planes, block_num, stride=1):
|
81 |
+
if block_num == 0:
|
82 |
+
return nn.Sequential(nn.Identity())
|
83 |
+
norm_layer = self._norm_layer
|
84 |
+
downsample = None
|
85 |
+
if stride != 1:
|
86 |
+
downsample = nn.Sequential(
|
87 |
+
nn.AvgPool2D(2, stride),
|
88 |
+
nn.utils.spectral_norm(
|
89 |
+
conv1x1(self.inplanes, planes * block.expansion)),
|
90 |
+
norm_layer(planes * block.expansion), )
|
91 |
+
elif self.inplanes != planes * block.expansion:
|
92 |
+
downsample = nn.Sequential(
|
93 |
+
nn.utils.spectral_norm(
|
94 |
+
conv1x1(self.inplanes, planes * block.expansion, stride)),
|
95 |
+
norm_layer(planes * block.expansion), )
|
96 |
+
|
97 |
+
layers = [block(self.inplanes, planes, stride, downsample, norm_layer)]
|
98 |
+
self.inplanes = planes * block.expansion
|
99 |
+
for _ in range(1, block_num):
|
100 |
+
layers.append(block(self.inplanes, planes, norm_layer=norm_layer))
|
101 |
+
|
102 |
+
return nn.Sequential(*layers)
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
x = self.conv1(x)
|
106 |
+
x = self.bn1(x)
|
107 |
+
x = self.activation(x)
|
108 |
+
x = self.conv2(x)
|
109 |
+
x = self.bn2(x)
|
110 |
+
x1 = self.activation(x) # N x 32 x 256 x 256
|
111 |
+
x = self.conv3(x1)
|
112 |
+
x = self.bn3(x)
|
113 |
+
x2 = self.activation(x) # N x 64 x 128 x 128
|
114 |
+
|
115 |
+
x3 = self.layer1(x2) # N x 64 x 128 x 128
|
116 |
+
x4 = self.layer2(x3) # N x 128 x 64 x 64
|
117 |
+
x5 = self.layer3(x4) # N x 256 x 32 x 32
|
118 |
+
x = self.layer_bottleneck(x5) # N x 512 x 16 x 16
|
119 |
+
|
120 |
+
return x, (x1, x2, x3, x4, x5)
|
121 |
+
|
122 |
+
def init_weight(self):
|
123 |
+
|
124 |
+
for layer in self.sublayers():
|
125 |
+
if isinstance(layer, nn.Conv2D):
|
126 |
+
|
127 |
+
if hasattr(layer, "weight_orig"):
|
128 |
+
param = layer.weight_orig
|
129 |
+
else:
|
130 |
+
param = layer.weight
|
131 |
+
param_init.xavier_uniform(param)
|
132 |
+
|
133 |
+
elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
|
134 |
+
param_init.constant_init(layer.weight, value=1.0)
|
135 |
+
param_init.constant_init(layer.bias, value=0.0)
|
136 |
+
|
137 |
+
elif isinstance(layer, BasicBlock):
|
138 |
+
param_init.constant_init(layer.bn2.weight, value=0.0)
|
139 |
+
|
140 |
+
if self.pretrained is not None:
|
141 |
+
utils.load_pretrained_model(self, self.pretrained)
|
142 |
+
|
143 |
+
|
144 |
+
@manager.MODELS.add_component
|
145 |
+
class ResShortCut_D(ResNet_D):
|
146 |
+
def __init__(self,
|
147 |
+
input_channels,
|
148 |
+
layers,
|
149 |
+
late_downsample=False,
|
150 |
+
pretrained=None):
|
151 |
+
super().__init__(
|
152 |
+
input_channels,
|
153 |
+
layers,
|
154 |
+
late_downsample=late_downsample,
|
155 |
+
pretrained=pretrained)
|
156 |
+
|
157 |
+
self.shortcut_inplane = [input_channels, self.midplanes, 64, 128, 256]
|
158 |
+
self.shortcut_plane = [32, self.midplanes, 64, 128, 256]
|
159 |
+
|
160 |
+
self.shortcut = nn.LayerList()
|
161 |
+
for stage, inplane in enumerate(self.shortcut_inplane):
|
162 |
+
self.shortcut.append(
|
163 |
+
self._make_shortcut(inplane, self.shortcut_plane[stage]))
|
164 |
+
|
165 |
+
def _make_shortcut(self, inplane, planes):
|
166 |
+
return nn.Sequential(
|
167 |
+
nn.utils.spectral_norm(
|
168 |
+
nn.Conv2D(
|
169 |
+
inplane, planes, kernel_size=3, padding=1,
|
170 |
+
bias_attr=False)),
|
171 |
+
nn.ReLU(),
|
172 |
+
self._norm_layer(planes),
|
173 |
+
nn.utils.spectral_norm(
|
174 |
+
nn.Conv2D(
|
175 |
+
planes, planes, kernel_size=3, padding=1, bias_attr=False)),
|
176 |
+
nn.ReLU(),
|
177 |
+
self._norm_layer(planes))
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
|
181 |
+
out = self.conv1(x)
|
182 |
+
out = self.bn1(out)
|
183 |
+
out = self.activation(out)
|
184 |
+
out = self.conv2(out)
|
185 |
+
out = self.bn2(out)
|
186 |
+
x1 = self.activation(out) # N x 32 x 256 x 256
|
187 |
+
out = self.conv3(x1)
|
188 |
+
out = self.bn3(out)
|
189 |
+
out = self.activation(out)
|
190 |
+
|
191 |
+
x2 = self.layer1(out) # N x 64 x 128 x 128
|
192 |
+
x3 = self.layer2(x2) # N x 128 x 64 x 64
|
193 |
+
x4 = self.layer3(x3) # N x 256 x 32 x 32
|
194 |
+
out = self.layer_bottleneck(x4) # N x 512 x 16 x 16
|
195 |
+
|
196 |
+
fea1 = self.shortcut[0](x) # input image and trimap
|
197 |
+
fea2 = self.shortcut[1](x1)
|
198 |
+
fea3 = self.shortcut[2](x2)
|
199 |
+
fea4 = self.shortcut[3](x3)
|
200 |
+
fea5 = self.shortcut[4](x4)
|
201 |
+
|
202 |
+
return out, {
|
203 |
+
'shortcut': (fea1, fea2, fea3, fea4, fea5),
|
204 |
+
'image': x[:, :3, ...]
|
205 |
+
}
|
206 |
+
|
207 |
+
|
208 |
+
@manager.MODELS.add_component
|
209 |
+
class ResGuidedCxtAtten(ResNet_D):
|
210 |
+
def __init__(self,
|
211 |
+
input_channels,
|
212 |
+
layers,
|
213 |
+
late_downsample=False,
|
214 |
+
pretrained=None):
|
215 |
+
super().__init__(
|
216 |
+
input_channels,
|
217 |
+
layers,
|
218 |
+
late_downsample=late_downsample,
|
219 |
+
pretrained=pretrained)
|
220 |
+
self.input_channels = input_channels
|
221 |
+
self.shortcut_inplane = [input_channels, self.midplanes, 64, 128, 256]
|
222 |
+
self.shortcut_plane = [32, self.midplanes, 64, 128, 256]
|
223 |
+
|
224 |
+
self.shortcut = nn.LayerList()
|
225 |
+
for stage, inplane in enumerate(self.shortcut_inplane):
|
226 |
+
self.shortcut.append(
|
227 |
+
self._make_shortcut(inplane, self.shortcut_plane[stage]))
|
228 |
+
|
229 |
+
self.guidance_head = nn.Sequential(
|
230 |
+
nn.Pad2D(
|
231 |
+
1, mode="reflect"),
|
232 |
+
nn.utils.spectral_norm(
|
233 |
+
nn.Conv2D(
|
234 |
+
3, 16, kernel_size=3, padding=0, stride=2,
|
235 |
+
bias_attr=False)),
|
236 |
+
nn.ReLU(),
|
237 |
+
self._norm_layer(16),
|
238 |
+
nn.Pad2D(
|
239 |
+
1, mode="reflect"),
|
240 |
+
nn.utils.spectral_norm(
|
241 |
+
nn.Conv2D(
|
242 |
+
16, 32, kernel_size=3, padding=0, stride=2,
|
243 |
+
bias_attr=False)),
|
244 |
+
nn.ReLU(),
|
245 |
+
self._norm_layer(32),
|
246 |
+
nn.Pad2D(
|
247 |
+
1, mode="reflect"),
|
248 |
+
nn.utils.spectral_norm(
|
249 |
+
nn.Conv2D(
|
250 |
+
32,
|
251 |
+
128,
|
252 |
+
kernel_size=3,
|
253 |
+
padding=0,
|
254 |
+
stride=2,
|
255 |
+
bias_attr=False)),
|
256 |
+
nn.ReLU(),
|
257 |
+
self._norm_layer(128))
|
258 |
+
|
259 |
+
self.gca = GuidedCxtAtten(128, 128)
|
260 |
+
|
261 |
+
self.init_weight()
|
262 |
+
|
263 |
+
def init_weight(self):
|
264 |
+
|
265 |
+
for layer in self.sublayers():
|
266 |
+
if isinstance(layer, nn.Conv2D):
|
267 |
+
initializer = nn.initializer.XavierUniform()
|
268 |
+
if hasattr(layer, "weight_orig"):
|
269 |
+
param = layer.weight_orig
|
270 |
+
else:
|
271 |
+
param = layer.weight
|
272 |
+
initializer(param, param.block)
|
273 |
+
|
274 |
+
elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
|
275 |
+
param_init.constant_init(layer.weight, value=1.0)
|
276 |
+
param_init.constant_init(layer.bias, value=0.0)
|
277 |
+
|
278 |
+
elif isinstance(layer, BasicBlock):
|
279 |
+
param_init.constant_init(layer.bn2.weight, value=0.0)
|
280 |
+
|
281 |
+
if self.pretrained is not None:
|
282 |
+
utils.load_pretrained_model(self, self.pretrained)
|
283 |
+
|
284 |
+
def _make_shortcut(self, inplane, planes):
|
285 |
+
return nn.Sequential(
|
286 |
+
nn.utils.spectral_norm(
|
287 |
+
nn.Conv2D(
|
288 |
+
inplane, planes, kernel_size=3, padding=1,
|
289 |
+
bias_attr=False)),
|
290 |
+
nn.ReLU(),
|
291 |
+
self._norm_layer(planes),
|
292 |
+
nn.utils.spectral_norm(
|
293 |
+
nn.Conv2D(
|
294 |
+
planes, planes, kernel_size=3, padding=1, bias_attr=False)),
|
295 |
+
nn.ReLU(),
|
296 |
+
self._norm_layer(planes))
|
297 |
+
|
298 |
+
def forward(self, x):
|
299 |
+
|
300 |
+
out = self.conv1(x)
|
301 |
+
out = self.bn1(out)
|
302 |
+
out = self.activation(out)
|
303 |
+
out = self.conv2(out)
|
304 |
+
out = self.bn2(out)
|
305 |
+
x1 = self.activation(out) # N x 32 x 256 x 256
|
306 |
+
out = self.conv3(x1)
|
307 |
+
out = self.bn3(out)
|
308 |
+
out = self.activation(out)
|
309 |
+
|
310 |
+
im_fea = self.guidance_head(
|
311 |
+
x[:, :3, ...]) # downsample origin image and extract features
|
312 |
+
if self.input_channels == 6:
|
313 |
+
unknown = F.interpolate(
|
314 |
+
x[:, 4:5, ...], scale_factor=1 / 8, mode='nearest')
|
315 |
+
else:
|
316 |
+
unknown = x[:, 3:, ...].equal(paddle.to_tensor([1.]))
|
317 |
+
unknown = paddle.cast(unknown, dtype='float32')
|
318 |
+
unknown = F.interpolate(unknown, scale_factor=1 / 8, mode='nearest')
|
319 |
+
|
320 |
+
x2 = self.layer1(out) # N x 64 x 128 x 128
|
321 |
+
x3 = self.layer2(x2) # N x 128 x 64 x 64
|
322 |
+
x3 = self.gca(im_fea, x3, unknown) # contextual attention
|
323 |
+
x4 = self.layer3(x3) # N x 256 x 32 x 32
|
324 |
+
out = self.layer_bottleneck(x4) # N x 512 x 16 x 16
|
325 |
+
|
326 |
+
fea1 = self.shortcut[0](x) # input image and trimap
|
327 |
+
fea2 = self.shortcut[1](x1)
|
328 |
+
fea3 = self.shortcut[2](x2)
|
329 |
+
fea4 = self.shortcut[3](x3)
|
330 |
+
fea5 = self.shortcut[4](x4)
|
331 |
+
|
332 |
+
return out, {
|
333 |
+
'shortcut': (fea1, fea2, fea3, fea4, fea5),
|
334 |
+
'image_fea': im_fea,
|
335 |
+
'unknown': unknown,
|
336 |
+
}
|
337 |
+
|
338 |
+
|
339 |
+
class BasicBlock(nn.Layer):
|
340 |
+
expansion = 1
|
341 |
+
|
342 |
+
def __init__(self,
|
343 |
+
inplanes,
|
344 |
+
planes,
|
345 |
+
stride=1,
|
346 |
+
downsample=None,
|
347 |
+
norm_layer=None):
|
348 |
+
super().__init__()
|
349 |
+
if norm_layer is None:
|
350 |
+
norm_layer = nn.BatchNorm
|
351 |
+
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
352 |
+
self.conv1 = nn.utils.spectral_norm(conv3x3(inplanes, planes, stride))
|
353 |
+
self.bn1 = norm_layer(planes)
|
354 |
+
self.activation = nn.ReLU()
|
355 |
+
self.conv2 = nn.utils.spectral_norm(conv3x3(planes, planes))
|
356 |
+
self.bn2 = norm_layer(planes)
|
357 |
+
self.downsample = downsample
|
358 |
+
self.stride = stride
|
359 |
+
|
360 |
+
def forward(self, x):
|
361 |
+
identity = x
|
362 |
+
|
363 |
+
out = self.conv1(x)
|
364 |
+
out = self.bn1(out)
|
365 |
+
out = self.activation(out)
|
366 |
+
|
367 |
+
out = self.conv2(out)
|
368 |
+
out = self.bn2(out)
|
369 |
+
|
370 |
+
if self.downsample is not None:
|
371 |
+
identity = self.downsample(x)
|
372 |
+
|
373 |
+
out += identity
|
374 |
+
out = self.activation(out)
|
375 |
+
|
376 |
+
return out
|
377 |
+
|
378 |
+
|
379 |
+
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
380 |
+
"""3x3 convolution with padding"""
|
381 |
+
return nn.Conv2D(
|
382 |
+
in_planes,
|
383 |
+
out_planes,
|
384 |
+
kernel_size=3,
|
385 |
+
stride=stride,
|
386 |
+
padding=dilation,
|
387 |
+
groups=groups,
|
388 |
+
bias_attr=False,
|
389 |
+
dilation=dilation)
|
390 |
+
|
391 |
+
|
392 |
+
def conv1x1(in_planes, out_planes, stride=1):
|
393 |
+
"""1x1 convolution"""
|
394 |
+
return nn.Conv2D(
|
395 |
+
in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)
|
ppmatting/models/backbone/hrnet.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
|
17 |
+
import paddle
|
18 |
+
import paddle.nn as nn
|
19 |
+
import paddle.nn.functional as F
|
20 |
+
|
21 |
+
from paddleseg.cvlibs import manager, param_init
|
22 |
+
from paddleseg.models import layers
|
23 |
+
from paddleseg.utils import utils
|
24 |
+
|
25 |
+
__all__ = [
|
26 |
+
"HRNet_W18_Small_V1", "HRNet_W18_Small_V2", "HRNet_W18", "HRNet_W30",
|
27 |
+
"HRNet_W32", "HRNet_W40", "HRNet_W44", "HRNet_W48", "HRNet_W60", "HRNet_W64"
|
28 |
+
]
|
29 |
+
|
30 |
+
|
31 |
+
class HRNet(nn.Layer):
|
32 |
+
"""
|
33 |
+
The HRNet implementation based on PaddlePaddle.
|
34 |
+
|
35 |
+
The original article refers to
|
36 |
+
Jingdong Wang, et, al. "HRNet:Deep High-Resolution Representation Learning for Visual Recognition"
|
37 |
+
(https://arxiv.org/pdf/1908.07919.pdf).
|
38 |
+
|
39 |
+
Args:
|
40 |
+
pretrained (str, optional): The path of pretrained model.
|
41 |
+
stage1_num_modules (int, optional): Number of modules for stage1. Default 1.
|
42 |
+
stage1_num_blocks (list, optional): Number of blocks per module for stage1. Default (4).
|
43 |
+
stage1_num_channels (list, optional): Number of channels per branch for stage1. Default (64).
|
44 |
+
stage2_num_modules (int, optional): Number of modules for stage2. Default 1.
|
45 |
+
stage2_num_blocks (list, optional): Number of blocks per module for stage2. Default (4, 4).
|
46 |
+
stage2_num_channels (list, optional): Number of channels per branch for stage2. Default (18, 36).
|
47 |
+
stage3_num_modules (int, optional): Number of modules for stage3. Default 4.
|
48 |
+
stage3_num_blocks (list, optional): Number of blocks per module for stage3. Default (4, 4, 4).
|
49 |
+
stage3_num_channels (list, optional): Number of channels per branch for stage3. Default [18, 36, 72).
|
50 |
+
stage4_num_modules (int, optional): Number of modules for stage4. Default 3.
|
51 |
+
stage4_num_blocks (list, optional): Number of blocks per module for stage4. Default (4, 4, 4, 4).
|
52 |
+
stage4_num_channels (list, optional): Number of channels per branch for stage4. Default (18, 36, 72. 144).
|
53 |
+
has_se (bool, optional): Whether to use Squeeze-and-Excitation module. Default False.
|
54 |
+
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
|
55 |
+
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(self,
|
59 |
+
input_channels=3,
|
60 |
+
pretrained=None,
|
61 |
+
stage1_num_modules=1,
|
62 |
+
stage1_num_blocks=(4, ),
|
63 |
+
stage1_num_channels=(64, ),
|
64 |
+
stage2_num_modules=1,
|
65 |
+
stage2_num_blocks=(4, 4),
|
66 |
+
stage2_num_channels=(18, 36),
|
67 |
+
stage3_num_modules=4,
|
68 |
+
stage3_num_blocks=(4, 4, 4),
|
69 |
+
stage3_num_channels=(18, 36, 72),
|
70 |
+
stage4_num_modules=3,
|
71 |
+
stage4_num_blocks=(4, 4, 4, 4),
|
72 |
+
stage4_num_channels=(18, 36, 72, 144),
|
73 |
+
has_se=False,
|
74 |
+
align_corners=False,
|
75 |
+
padding_same=True):
|
76 |
+
super(HRNet, self).__init__()
|
77 |
+
self.pretrained = pretrained
|
78 |
+
self.stage1_num_modules = stage1_num_modules
|
79 |
+
self.stage1_num_blocks = stage1_num_blocks
|
80 |
+
self.stage1_num_channels = stage1_num_channels
|
81 |
+
self.stage2_num_modules = stage2_num_modules
|
82 |
+
self.stage2_num_blocks = stage2_num_blocks
|
83 |
+
self.stage2_num_channels = stage2_num_channels
|
84 |
+
self.stage3_num_modules = stage3_num_modules
|
85 |
+
self.stage3_num_blocks = stage3_num_blocks
|
86 |
+
self.stage3_num_channels = stage3_num_channels
|
87 |
+
self.stage4_num_modules = stage4_num_modules
|
88 |
+
self.stage4_num_blocks = stage4_num_blocks
|
89 |
+
self.stage4_num_channels = stage4_num_channels
|
90 |
+
self.has_se = has_se
|
91 |
+
self.align_corners = align_corners
|
92 |
+
|
93 |
+
self.feat_channels = [i for i in stage4_num_channels]
|
94 |
+
self.feat_channels = [64] + self.feat_channels
|
95 |
+
|
96 |
+
self.conv_layer1_1 = layers.ConvBNReLU(
|
97 |
+
in_channels=input_channels,
|
98 |
+
out_channels=64,
|
99 |
+
kernel_size=3,
|
100 |
+
stride=2,
|
101 |
+
padding=1 if not padding_same else 'same',
|
102 |
+
bias_attr=False)
|
103 |
+
|
104 |
+
self.conv_layer1_2 = layers.ConvBNReLU(
|
105 |
+
in_channels=64,
|
106 |
+
out_channels=64,
|
107 |
+
kernel_size=3,
|
108 |
+
stride=2,
|
109 |
+
padding=1 if not padding_same else 'same',
|
110 |
+
bias_attr=False)
|
111 |
+
|
112 |
+
self.la1 = Layer1(
|
113 |
+
num_channels=64,
|
114 |
+
num_blocks=self.stage1_num_blocks[0],
|
115 |
+
num_filters=self.stage1_num_channels[0],
|
116 |
+
has_se=has_se,
|
117 |
+
name="layer2",
|
118 |
+
padding_same=padding_same)
|
119 |
+
|
120 |
+
self.tr1 = TransitionLayer(
|
121 |
+
in_channels=[self.stage1_num_channels[0] * 4],
|
122 |
+
out_channels=self.stage2_num_channels,
|
123 |
+
name="tr1",
|
124 |
+
padding_same=padding_same)
|
125 |
+
|
126 |
+
self.st2 = Stage(
|
127 |
+
num_channels=self.stage2_num_channels,
|
128 |
+
num_modules=self.stage2_num_modules,
|
129 |
+
num_blocks=self.stage2_num_blocks,
|
130 |
+
num_filters=self.stage2_num_channels,
|
131 |
+
has_se=self.has_se,
|
132 |
+
name="st2",
|
133 |
+
align_corners=align_corners,
|
134 |
+
padding_same=padding_same)
|
135 |
+
|
136 |
+
self.tr2 = TransitionLayer(
|
137 |
+
in_channels=self.stage2_num_channels,
|
138 |
+
out_channels=self.stage3_num_channels,
|
139 |
+
name="tr2",
|
140 |
+
padding_same=padding_same)
|
141 |
+
self.st3 = Stage(
|
142 |
+
num_channels=self.stage3_num_channels,
|
143 |
+
num_modules=self.stage3_num_modules,
|
144 |
+
num_blocks=self.stage3_num_blocks,
|
145 |
+
num_filters=self.stage3_num_channels,
|
146 |
+
has_se=self.has_se,
|
147 |
+
name="st3",
|
148 |
+
align_corners=align_corners,
|
149 |
+
padding_same=padding_same)
|
150 |
+
|
151 |
+
self.tr3 = TransitionLayer(
|
152 |
+
in_channels=self.stage3_num_channels,
|
153 |
+
out_channels=self.stage4_num_channels,
|
154 |
+
name="tr3",
|
155 |
+
padding_same=padding_same)
|
156 |
+
self.st4 = Stage(
|
157 |
+
num_channels=self.stage4_num_channels,
|
158 |
+
num_modules=self.stage4_num_modules,
|
159 |
+
num_blocks=self.stage4_num_blocks,
|
160 |
+
num_filters=self.stage4_num_channels,
|
161 |
+
has_se=self.has_se,
|
162 |
+
name="st4",
|
163 |
+
align_corners=align_corners,
|
164 |
+
padding_same=padding_same)
|
165 |
+
|
166 |
+
self.init_weight()
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
feat_list = []
|
170 |
+
conv1 = self.conv_layer1_1(x)
|
171 |
+
feat_list.append(conv1)
|
172 |
+
conv2 = self.conv_layer1_2(conv1)
|
173 |
+
|
174 |
+
la1 = self.la1(conv2)
|
175 |
+
|
176 |
+
tr1 = self.tr1([la1])
|
177 |
+
st2 = self.st2(tr1)
|
178 |
+
|
179 |
+
tr2 = self.tr2(st2)
|
180 |
+
st3 = self.st3(tr2)
|
181 |
+
|
182 |
+
tr3 = self.tr3(st3)
|
183 |
+
st4 = self.st4(tr3)
|
184 |
+
|
185 |
+
feat_list = feat_list + st4
|
186 |
+
|
187 |
+
return feat_list
|
188 |
+
|
189 |
+
def init_weight(self):
|
190 |
+
for layer in self.sublayers():
|
191 |
+
if isinstance(layer, nn.Conv2D):
|
192 |
+
param_init.normal_init(layer.weight, std=0.001)
|
193 |
+
elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
|
194 |
+
param_init.constant_init(layer.weight, value=1.0)
|
195 |
+
param_init.constant_init(layer.bias, value=0.0)
|
196 |
+
if self.pretrained is not None:
|
197 |
+
utils.load_pretrained_model(self, self.pretrained)
|
198 |
+
|
199 |
+
|
200 |
+
class Layer1(nn.Layer):
|
201 |
+
def __init__(self,
|
202 |
+
num_channels,
|
203 |
+
num_filters,
|
204 |
+
num_blocks,
|
205 |
+
has_se=False,
|
206 |
+
name=None,
|
207 |
+
padding_same=True):
|
208 |
+
super(Layer1, self).__init__()
|
209 |
+
|
210 |
+
self.bottleneck_block_list = []
|
211 |
+
|
212 |
+
for i in range(num_blocks):
|
213 |
+
bottleneck_block = self.add_sublayer(
|
214 |
+
"bb_{}_{}".format(name, i + 1),
|
215 |
+
BottleneckBlock(
|
216 |
+
num_channels=num_channels if i == 0 else num_filters * 4,
|
217 |
+
num_filters=num_filters,
|
218 |
+
has_se=has_se,
|
219 |
+
stride=1,
|
220 |
+
downsample=True if i == 0 else False,
|
221 |
+
name=name + '_' + str(i + 1),
|
222 |
+
padding_same=padding_same))
|
223 |
+
self.bottleneck_block_list.append(bottleneck_block)
|
224 |
+
|
225 |
+
def forward(self, x):
|
226 |
+
conv = x
|
227 |
+
for block_func in self.bottleneck_block_list:
|
228 |
+
conv = block_func(conv)
|
229 |
+
return conv
|
230 |
+
|
231 |
+
|
232 |
+
class TransitionLayer(nn.Layer):
|
233 |
+
def __init__(self, in_channels, out_channels, name=None, padding_same=True):
|
234 |
+
super(TransitionLayer, self).__init__()
|
235 |
+
|
236 |
+
num_in = len(in_channels)
|
237 |
+
num_out = len(out_channels)
|
238 |
+
self.conv_bn_func_list = []
|
239 |
+
for i in range(num_out):
|
240 |
+
residual = None
|
241 |
+
if i < num_in:
|
242 |
+
if in_channels[i] != out_channels[i]:
|
243 |
+
residual = self.add_sublayer(
|
244 |
+
"transition_{}_layer_{}".format(name, i + 1),
|
245 |
+
layers.ConvBNReLU(
|
246 |
+
in_channels=in_channels[i],
|
247 |
+
out_channels=out_channels[i],
|
248 |
+
kernel_size=3,
|
249 |
+
padding=1 if not padding_same else 'same',
|
250 |
+
bias_attr=False))
|
251 |
+
else:
|
252 |
+
residual = self.add_sublayer(
|
253 |
+
"transition_{}_layer_{}".format(name, i + 1),
|
254 |
+
layers.ConvBNReLU(
|
255 |
+
in_channels=in_channels[-1],
|
256 |
+
out_channels=out_channels[i],
|
257 |
+
kernel_size=3,
|
258 |
+
stride=2,
|
259 |
+
padding=1 if not padding_same else 'same',
|
260 |
+
bias_attr=False))
|
261 |
+
self.conv_bn_func_list.append(residual)
|
262 |
+
|
263 |
+
def forward(self, x):
|
264 |
+
outs = []
|
265 |
+
for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
|
266 |
+
if conv_bn_func is None:
|
267 |
+
outs.append(x[idx])
|
268 |
+
else:
|
269 |
+
if idx < len(x):
|
270 |
+
outs.append(conv_bn_func(x[idx]))
|
271 |
+
else:
|
272 |
+
outs.append(conv_bn_func(x[-1]))
|
273 |
+
return outs
|
274 |
+
|
275 |
+
|
276 |
+
class Branches(nn.Layer):
|
277 |
+
def __init__(self,
|
278 |
+
num_blocks,
|
279 |
+
in_channels,
|
280 |
+
out_channels,
|
281 |
+
has_se=False,
|
282 |
+
name=None,
|
283 |
+
padding_same=True):
|
284 |
+
super(Branches, self).__init__()
|
285 |
+
|
286 |
+
self.basic_block_list = []
|
287 |
+
|
288 |
+
for i in range(len(out_channels)):
|
289 |
+
self.basic_block_list.append([])
|
290 |
+
for j in range(num_blocks[i]):
|
291 |
+
in_ch = in_channels[i] if j == 0 else out_channels[i]
|
292 |
+
basic_block_func = self.add_sublayer(
|
293 |
+
"bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
|
294 |
+
BasicBlock(
|
295 |
+
num_channels=in_ch,
|
296 |
+
num_filters=out_channels[i],
|
297 |
+
has_se=has_se,
|
298 |
+
name=name + '_branch_layer_' + str(i + 1) + '_' +
|
299 |
+
str(j + 1),
|
300 |
+
padding_same=padding_same))
|
301 |
+
self.basic_block_list[i].append(basic_block_func)
|
302 |
+
|
303 |
+
def forward(self, x):
|
304 |
+
outs = []
|
305 |
+
for idx, input in enumerate(x):
|
306 |
+
conv = input
|
307 |
+
for basic_block_func in self.basic_block_list[idx]:
|
308 |
+
conv = basic_block_func(conv)
|
309 |
+
outs.append(conv)
|
310 |
+
return outs
|
311 |
+
|
312 |
+
|
313 |
+
class BottleneckBlock(nn.Layer):
|
314 |
+
def __init__(self,
|
315 |
+
num_channels,
|
316 |
+
num_filters,
|
317 |
+
has_se,
|
318 |
+
stride=1,
|
319 |
+
downsample=False,
|
320 |
+
name=None,
|
321 |
+
padding_same=True):
|
322 |
+
super(BottleneckBlock, self).__init__()
|
323 |
+
|
324 |
+
self.has_se = has_se
|
325 |
+
self.downsample = downsample
|
326 |
+
|
327 |
+
self.conv1 = layers.ConvBNReLU(
|
328 |
+
in_channels=num_channels,
|
329 |
+
out_channels=num_filters,
|
330 |
+
kernel_size=1,
|
331 |
+
bias_attr=False)
|
332 |
+
|
333 |
+
self.conv2 = layers.ConvBNReLU(
|
334 |
+
in_channels=num_filters,
|
335 |
+
out_channels=num_filters,
|
336 |
+
kernel_size=3,
|
337 |
+
stride=stride,
|
338 |
+
padding=1 if not padding_same else 'same',
|
339 |
+
bias_attr=False)
|
340 |
+
|
341 |
+
self.conv3 = layers.ConvBN(
|
342 |
+
in_channels=num_filters,
|
343 |
+
out_channels=num_filters * 4,
|
344 |
+
kernel_size=1,
|
345 |
+
bias_attr=False)
|
346 |
+
|
347 |
+
if self.downsample:
|
348 |
+
self.conv_down = layers.ConvBN(
|
349 |
+
in_channels=num_channels,
|
350 |
+
out_channels=num_filters * 4,
|
351 |
+
kernel_size=1,
|
352 |
+
bias_attr=False)
|
353 |
+
|
354 |
+
if self.has_se:
|
355 |
+
self.se = SELayer(
|
356 |
+
num_channels=num_filters * 4,
|
357 |
+
num_filters=num_filters * 4,
|
358 |
+
reduction_ratio=16,
|
359 |
+
name=name + '_fc')
|
360 |
+
|
361 |
+
self.add = layers.Add()
|
362 |
+
self.relu = layers.Activation("relu")
|
363 |
+
|
364 |
+
def forward(self, x):
|
365 |
+
residual = x
|
366 |
+
conv1 = self.conv1(x)
|
367 |
+
conv2 = self.conv2(conv1)
|
368 |
+
conv3 = self.conv3(conv2)
|
369 |
+
|
370 |
+
if self.downsample:
|
371 |
+
residual = self.conv_down(x)
|
372 |
+
|
373 |
+
if self.has_se:
|
374 |
+
conv3 = self.se(conv3)
|
375 |
+
|
376 |
+
y = self.add(conv3, residual)
|
377 |
+
y = self.relu(y)
|
378 |
+
return y
|
379 |
+
|
380 |
+
|
381 |
+
class BasicBlock(nn.Layer):
|
382 |
+
def __init__(self,
|
383 |
+
num_channels,
|
384 |
+
num_filters,
|
385 |
+
stride=1,
|
386 |
+
has_se=False,
|
387 |
+
downsample=False,
|
388 |
+
name=None,
|
389 |
+
padding_same=True):
|
390 |
+
super(BasicBlock, self).__init__()
|
391 |
+
|
392 |
+
self.has_se = has_se
|
393 |
+
self.downsample = downsample
|
394 |
+
|
395 |
+
self.conv1 = layers.ConvBNReLU(
|
396 |
+
in_channels=num_channels,
|
397 |
+
out_channels=num_filters,
|
398 |
+
kernel_size=3,
|
399 |
+
stride=stride,
|
400 |
+
padding=1 if not padding_same else 'same',
|
401 |
+
bias_attr=False)
|
402 |
+
self.conv2 = layers.ConvBN(
|
403 |
+
in_channels=num_filters,
|
404 |
+
out_channels=num_filters,
|
405 |
+
kernel_size=3,
|
406 |
+
padding=1 if not padding_same else 'same',
|
407 |
+
bias_attr=False)
|
408 |
+
|
409 |
+
if self.downsample:
|
410 |
+
self.conv_down = layers.ConvBNReLU(
|
411 |
+
in_channels=num_channels,
|
412 |
+
out_channels=num_filters,
|
413 |
+
kernel_size=1,
|
414 |
+
bias_attr=False)
|
415 |
+
|
416 |
+
if self.has_se:
|
417 |
+
self.se = SELayer(
|
418 |
+
num_channels=num_filters,
|
419 |
+
num_filters=num_filters,
|
420 |
+
reduction_ratio=16,
|
421 |
+
name=name + '_fc')
|
422 |
+
|
423 |
+
self.add = layers.Add()
|
424 |
+
self.relu = layers.Activation("relu")
|
425 |
+
|
426 |
+
def forward(self, x):
|
427 |
+
residual = x
|
428 |
+
conv1 = self.conv1(x)
|
429 |
+
conv2 = self.conv2(conv1)
|
430 |
+
|
431 |
+
if self.downsample:
|
432 |
+
residual = self.conv_down(x)
|
433 |
+
|
434 |
+
if self.has_se:
|
435 |
+
conv2 = self.se(conv2)
|
436 |
+
|
437 |
+
y = self.add(conv2, residual)
|
438 |
+
y = self.relu(y)
|
439 |
+
return y
|
440 |
+
|
441 |
+
|
442 |
+
class SELayer(nn.Layer):
|
443 |
+
def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
|
444 |
+
super(SELayer, self).__init__()
|
445 |
+
|
446 |
+
self.pool2d_gap = nn.AdaptiveAvgPool2D(1)
|
447 |
+
|
448 |
+
self._num_channels = num_channels
|
449 |
+
|
450 |
+
med_ch = int(num_channels / reduction_ratio)
|
451 |
+
stdv = 1.0 / math.sqrt(num_channels * 1.0)
|
452 |
+
self.squeeze = nn.Linear(
|
453 |
+
num_channels,
|
454 |
+
med_ch,
|
455 |
+
weight_attr=paddle.ParamAttr(
|
456 |
+
initializer=nn.initializer.Uniform(-stdv, stdv)))
|
457 |
+
|
458 |
+
stdv = 1.0 / math.sqrt(med_ch * 1.0)
|
459 |
+
self.excitation = nn.Linear(
|
460 |
+
med_ch,
|
461 |
+
num_filters,
|
462 |
+
weight_attr=paddle.ParamAttr(
|
463 |
+
initializer=nn.initializer.Uniform(-stdv, stdv)))
|
464 |
+
|
465 |
+
def forward(self, x):
|
466 |
+
pool = self.pool2d_gap(x)
|
467 |
+
pool = paddle.reshape(pool, shape=[-1, self._num_channels])
|
468 |
+
squeeze = self.squeeze(pool)
|
469 |
+
squeeze = F.relu(squeeze)
|
470 |
+
excitation = self.excitation(squeeze)
|
471 |
+
excitation = F.sigmoid(excitation)
|
472 |
+
excitation = paddle.reshape(
|
473 |
+
excitation, shape=[-1, self._num_channels, 1, 1])
|
474 |
+
out = x * excitation
|
475 |
+
return out
|
476 |
+
|
477 |
+
|
478 |
+
class Stage(nn.Layer):
|
479 |
+
def __init__(self,
|
480 |
+
num_channels,
|
481 |
+
num_modules,
|
482 |
+
num_blocks,
|
483 |
+
num_filters,
|
484 |
+
has_se=False,
|
485 |
+
multi_scale_output=True,
|
486 |
+
name=None,
|
487 |
+
align_corners=False,
|
488 |
+
padding_same=True):
|
489 |
+
super(Stage, self).__init__()
|
490 |
+
|
491 |
+
self._num_modules = num_modules
|
492 |
+
|
493 |
+
self.stage_func_list = []
|
494 |
+
for i in range(num_modules):
|
495 |
+
if i == num_modules - 1 and not multi_scale_output:
|
496 |
+
stage_func = self.add_sublayer(
|
497 |
+
"stage_{}_{}".format(name, i + 1),
|
498 |
+
HighResolutionModule(
|
499 |
+
num_channels=num_channels,
|
500 |
+
num_blocks=num_blocks,
|
501 |
+
num_filters=num_filters,
|
502 |
+
has_se=has_se,
|
503 |
+
multi_scale_output=False,
|
504 |
+
name=name + '_' + str(i + 1),
|
505 |
+
align_corners=align_corners,
|
506 |
+
padding_same=padding_same))
|
507 |
+
else:
|
508 |
+
stage_func = self.add_sublayer(
|
509 |
+
"stage_{}_{}".format(name, i + 1),
|
510 |
+
HighResolutionModule(
|
511 |
+
num_channels=num_channels,
|
512 |
+
num_blocks=num_blocks,
|
513 |
+
num_filters=num_filters,
|
514 |
+
has_se=has_se,
|
515 |
+
name=name + '_' + str(i + 1),
|
516 |
+
align_corners=align_corners,
|
517 |
+
padding_same=padding_same))
|
518 |
+
|
519 |
+
self.stage_func_list.append(stage_func)
|
520 |
+
|
521 |
+
def forward(self, x):
|
522 |
+
out = x
|
523 |
+
for idx in range(self._num_modules):
|
524 |
+
out = self.stage_func_list[idx](out)
|
525 |
+
return out
|
526 |
+
|
527 |
+
|
528 |
+
class HighResolutionModule(nn.Layer):
|
529 |
+
def __init__(self,
|
530 |
+
num_channels,
|
531 |
+
num_blocks,
|
532 |
+
num_filters,
|
533 |
+
has_se=False,
|
534 |
+
multi_scale_output=True,
|
535 |
+
name=None,
|
536 |
+
align_corners=False,
|
537 |
+
padding_same=True):
|
538 |
+
super(HighResolutionModule, self).__init__()
|
539 |
+
|
540 |
+
self.branches_func = Branches(
|
541 |
+
num_blocks=num_blocks,
|
542 |
+
in_channels=num_channels,
|
543 |
+
out_channels=num_filters,
|
544 |
+
has_se=has_se,
|
545 |
+
name=name,
|
546 |
+
padding_same=padding_same)
|
547 |
+
|
548 |
+
self.fuse_func = FuseLayers(
|
549 |
+
in_channels=num_filters,
|
550 |
+
out_channels=num_filters,
|
551 |
+
multi_scale_output=multi_scale_output,
|
552 |
+
name=name,
|
553 |
+
align_corners=align_corners,
|
554 |
+
padding_same=padding_same)
|
555 |
+
|
556 |
+
def forward(self, x):
|
557 |
+
out = self.branches_func(x)
|
558 |
+
out = self.fuse_func(out)
|
559 |
+
return out
|
560 |
+
|
561 |
+
|
562 |
+
class FuseLayers(nn.Layer):
|
563 |
+
def __init__(self,
|
564 |
+
in_channels,
|
565 |
+
out_channels,
|
566 |
+
multi_scale_output=True,
|
567 |
+
name=None,
|
568 |
+
align_corners=False,
|
569 |
+
padding_same=True):
|
570 |
+
super(FuseLayers, self).__init__()
|
571 |
+
|
572 |
+
self._actual_ch = len(in_channels) if multi_scale_output else 1
|
573 |
+
self._in_channels = in_channels
|
574 |
+
self.align_corners = align_corners
|
575 |
+
|
576 |
+
self.residual_func_list = []
|
577 |
+
for i in range(self._actual_ch):
|
578 |
+
for j in range(len(in_channels)):
|
579 |
+
if j > i:
|
580 |
+
residual_func = self.add_sublayer(
|
581 |
+
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
|
582 |
+
layers.ConvBN(
|
583 |
+
in_channels=in_channels[j],
|
584 |
+
out_channels=out_channels[i],
|
585 |
+
kernel_size=1,
|
586 |
+
bias_attr=False))
|
587 |
+
self.residual_func_list.append(residual_func)
|
588 |
+
elif j < i:
|
589 |
+
pre_num_filters = in_channels[j]
|
590 |
+
for k in range(i - j):
|
591 |
+
if k == i - j - 1:
|
592 |
+
residual_func = self.add_sublayer(
|
593 |
+
"residual_{}_layer_{}_{}_{}".format(
|
594 |
+
name, i + 1, j + 1, k + 1),
|
595 |
+
layers.ConvBN(
|
596 |
+
in_channels=pre_num_filters,
|
597 |
+
out_channels=out_channels[i],
|
598 |
+
kernel_size=3,
|
599 |
+
stride=2,
|
600 |
+
padding=1 if not padding_same else 'same',
|
601 |
+
bias_attr=False))
|
602 |
+
pre_num_filters = out_channels[i]
|
603 |
+
else:
|
604 |
+
residual_func = self.add_sublayer(
|
605 |
+
"residual_{}_layer_{}_{}_{}".format(
|
606 |
+
name, i + 1, j + 1, k + 1),
|
607 |
+
layers.ConvBNReLU(
|
608 |
+
in_channels=pre_num_filters,
|
609 |
+
out_channels=out_channels[j],
|
610 |
+
kernel_size=3,
|
611 |
+
stride=2,
|
612 |
+
padding=1 if not padding_same else 'same',
|
613 |
+
bias_attr=False))
|
614 |
+
pre_num_filters = out_channels[j]
|
615 |
+
self.residual_func_list.append(residual_func)
|
616 |
+
|
617 |
+
def forward(self, x):
|
618 |
+
outs = []
|
619 |
+
residual_func_idx = 0
|
620 |
+
for i in range(self._actual_ch):
|
621 |
+
residual = x[i]
|
622 |
+
residual_shape = paddle.shape(residual)[-2:]
|
623 |
+
for j in range(len(self._in_channels)):
|
624 |
+
if j > i:
|
625 |
+
y = self.residual_func_list[residual_func_idx](x[j])
|
626 |
+
residual_func_idx += 1
|
627 |
+
|
628 |
+
y = F.interpolate(
|
629 |
+
y,
|
630 |
+
residual_shape,
|
631 |
+
mode='bilinear',
|
632 |
+
align_corners=self.align_corners)
|
633 |
+
residual = residual + y
|
634 |
+
elif j < i:
|
635 |
+
y = x[j]
|
636 |
+
for k in range(i - j):
|
637 |
+
y = self.residual_func_list[residual_func_idx](y)
|
638 |
+
residual_func_idx += 1
|
639 |
+
|
640 |
+
residual = residual + y
|
641 |
+
|
642 |
+
residual = F.relu(residual)
|
643 |
+
outs.append(residual)
|
644 |
+
|
645 |
+
return outs
|
646 |
+
|
647 |
+
|
648 |
+
@manager.BACKBONES.add_component
|
649 |
+
def HRNet_W18_Small_V1(**kwargs):
|
650 |
+
model = HRNet(
|
651 |
+
stage1_num_modules=1,
|
652 |
+
stage1_num_blocks=[1],
|
653 |
+
stage1_num_channels=[32],
|
654 |
+
stage2_num_modules=1,
|
655 |
+
stage2_num_blocks=[2, 2],
|
656 |
+
stage2_num_channels=[16, 32],
|
657 |
+
stage3_num_modules=1,
|
658 |
+
stage3_num_blocks=[2, 2, 2],
|
659 |
+
stage3_num_channels=[16, 32, 64],
|
660 |
+
stage4_num_modules=1,
|
661 |
+
stage4_num_blocks=[2, 2, 2, 2],
|
662 |
+
stage4_num_channels=[16, 32, 64, 128],
|
663 |
+
**kwargs)
|
664 |
+
return model
|
665 |
+
|
666 |
+
|
667 |
+
@manager.BACKBONES.add_component
|
668 |
+
def HRNet_W18_Small_V2(**kwargs):
|
669 |
+
model = HRNet(
|
670 |
+
stage1_num_modules=1,
|
671 |
+
stage1_num_blocks=[2],
|
672 |
+
stage1_num_channels=[64],
|
673 |
+
stage2_num_modules=1,
|
674 |
+
stage2_num_blocks=[2, 2],
|
675 |
+
stage2_num_channels=[18, 36],
|
676 |
+
stage3_num_modules=3,
|
677 |
+
stage3_num_blocks=[2, 2, 2],
|
678 |
+
stage3_num_channels=[18, 36, 72],
|
679 |
+
stage4_num_modules=2,
|
680 |
+
stage4_num_blocks=[2, 2, 2, 2],
|
681 |
+
stage4_num_channels=[18, 36, 72, 144],
|
682 |
+
**kwargs)
|
683 |
+
return model
|
684 |
+
|
685 |
+
|
686 |
+
@manager.BACKBONES.add_component
|
687 |
+
def HRNet_W18(**kwargs):
|
688 |
+
model = HRNet(
|
689 |
+
stage1_num_modules=1,
|
690 |
+
stage1_num_blocks=[4],
|
691 |
+
stage1_num_channels=[64],
|
692 |
+
stage2_num_modules=1,
|
693 |
+
stage2_num_blocks=[4, 4],
|
694 |
+
stage2_num_channels=[18, 36],
|
695 |
+
stage3_num_modules=4,
|
696 |
+
stage3_num_blocks=[4, 4, 4],
|
697 |
+
stage3_num_channels=[18, 36, 72],
|
698 |
+
stage4_num_modules=3,
|
699 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
700 |
+
stage4_num_channels=[18, 36, 72, 144],
|
701 |
+
**kwargs)
|
702 |
+
return model
|
703 |
+
|
704 |
+
|
705 |
+
@manager.BACKBONES.add_component
|
706 |
+
def HRNet_W30(**kwargs):
|
707 |
+
model = HRNet(
|
708 |
+
stage1_num_modules=1,
|
709 |
+
stage1_num_blocks=[4],
|
710 |
+
stage1_num_channels=[64],
|
711 |
+
stage2_num_modules=1,
|
712 |
+
stage2_num_blocks=[4, 4],
|
713 |
+
stage2_num_channels=[30, 60],
|
714 |
+
stage3_num_modules=4,
|
715 |
+
stage3_num_blocks=[4, 4, 4],
|
716 |
+
stage3_num_channels=[30, 60, 120],
|
717 |
+
stage4_num_modules=3,
|
718 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
719 |
+
stage4_num_channels=[30, 60, 120, 240],
|
720 |
+
**kwargs)
|
721 |
+
return model
|
722 |
+
|
723 |
+
|
724 |
+
@manager.BACKBONES.add_component
|
725 |
+
def HRNet_W32(**kwargs):
|
726 |
+
model = HRNet(
|
727 |
+
stage1_num_modules=1,
|
728 |
+
stage1_num_blocks=[4],
|
729 |
+
stage1_num_channels=[64],
|
730 |
+
stage2_num_modules=1,
|
731 |
+
stage2_num_blocks=[4, 4],
|
732 |
+
stage2_num_channels=[32, 64],
|
733 |
+
stage3_num_modules=4,
|
734 |
+
stage3_num_blocks=[4, 4, 4],
|
735 |
+
stage3_num_channels=[32, 64, 128],
|
736 |
+
stage4_num_modules=3,
|
737 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
738 |
+
stage4_num_channels=[32, 64, 128, 256],
|
739 |
+
**kwargs)
|
740 |
+
return model
|
741 |
+
|
742 |
+
|
743 |
+
@manager.BACKBONES.add_component
|
744 |
+
def HRNet_W40(**kwargs):
|
745 |
+
model = HRNet(
|
746 |
+
stage1_num_modules=1,
|
747 |
+
stage1_num_blocks=[4],
|
748 |
+
stage1_num_channels=[64],
|
749 |
+
stage2_num_modules=1,
|
750 |
+
stage2_num_blocks=[4, 4],
|
751 |
+
stage2_num_channels=[40, 80],
|
752 |
+
stage3_num_modules=4,
|
753 |
+
stage3_num_blocks=[4, 4, 4],
|
754 |
+
stage3_num_channels=[40, 80, 160],
|
755 |
+
stage4_num_modules=3,
|
756 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
757 |
+
stage4_num_channels=[40, 80, 160, 320],
|
758 |
+
**kwargs)
|
759 |
+
return model
|
760 |
+
|
761 |
+
|
762 |
+
@manager.BACKBONES.add_component
|
763 |
+
def HRNet_W44(**kwargs):
|
764 |
+
model = HRNet(
|
765 |
+
stage1_num_modules=1,
|
766 |
+
stage1_num_blocks=[4],
|
767 |
+
stage1_num_channels=[64],
|
768 |
+
stage2_num_modules=1,
|
769 |
+
stage2_num_blocks=[4, 4],
|
770 |
+
stage2_num_channels=[44, 88],
|
771 |
+
stage3_num_modules=4,
|
772 |
+
stage3_num_blocks=[4, 4, 4],
|
773 |
+
stage3_num_channels=[44, 88, 176],
|
774 |
+
stage4_num_modules=3,
|
775 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
776 |
+
stage4_num_channels=[44, 88, 176, 352],
|
777 |
+
**kwargs)
|
778 |
+
return model
|
779 |
+
|
780 |
+
|
781 |
+
@manager.BACKBONES.add_component
|
782 |
+
def HRNet_W48(**kwargs):
|
783 |
+
model = HRNet(
|
784 |
+
stage1_num_modules=1,
|
785 |
+
stage1_num_blocks=[4],
|
786 |
+
stage1_num_channels=[64],
|
787 |
+
stage2_num_modules=1,
|
788 |
+
stage2_num_blocks=[4, 4],
|
789 |
+
stage2_num_channels=[48, 96],
|
790 |
+
stage3_num_modules=4,
|
791 |
+
stage3_num_blocks=[4, 4, 4],
|
792 |
+
stage3_num_channels=[48, 96, 192],
|
793 |
+
stage4_num_modules=3,
|
794 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
795 |
+
stage4_num_channels=[48, 96, 192, 384],
|
796 |
+
**kwargs)
|
797 |
+
return model
|
798 |
+
|
799 |
+
|
800 |
+
@manager.BACKBONES.add_component
|
801 |
+
def HRNet_W60(**kwargs):
|
802 |
+
model = HRNet(
|
803 |
+
stage1_num_modules=1,
|
804 |
+
stage1_num_blocks=[4],
|
805 |
+
stage1_num_channels=[64],
|
806 |
+
stage2_num_modules=1,
|
807 |
+
stage2_num_blocks=[4, 4],
|
808 |
+
stage2_num_channels=[60, 120],
|
809 |
+
stage3_num_modules=4,
|
810 |
+
stage3_num_blocks=[4, 4, 4],
|
811 |
+
stage3_num_channels=[60, 120, 240],
|
812 |
+
stage4_num_modules=3,
|
813 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
814 |
+
stage4_num_channels=[60, 120, 240, 480],
|
815 |
+
**kwargs)
|
816 |
+
return model
|
817 |
+
|
818 |
+
|
819 |
+
@manager.BACKBONES.add_component
|
820 |
+
def HRNet_W64(**kwargs):
|
821 |
+
model = HRNet(
|
822 |
+
stage1_num_modules=1,
|
823 |
+
stage1_num_blocks=[4],
|
824 |
+
stage1_num_channels=[64],
|
825 |
+
stage2_num_modules=1,
|
826 |
+
stage2_num_blocks=[4, 4],
|
827 |
+
stage2_num_channels=[64, 128],
|
828 |
+
stage3_num_modules=4,
|
829 |
+
stage3_num_blocks=[4, 4, 4],
|
830 |
+
stage3_num_channels=[64, 128, 256],
|
831 |
+
stage4_num_modules=3,
|
832 |
+
stage4_num_blocks=[4, 4, 4, 4],
|
833 |
+
stage4_num_channels=[64, 128, 256, 512],
|
834 |
+
**kwargs)
|
835 |
+
return model
|
ppmatting/models/backbone/mobilenet_v2.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import paddle
|
19 |
+
from paddle import ParamAttr
|
20 |
+
import paddle.nn as nn
|
21 |
+
import paddle.nn.functional as F
|
22 |
+
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
23 |
+
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
24 |
+
|
25 |
+
from paddleseg import utils
|
26 |
+
from paddleseg.cvlibs import manager
|
27 |
+
|
28 |
+
MODEL_URLS = {
|
29 |
+
"MobileNetV2_x0_25":
|
30 |
+
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams",
|
31 |
+
"MobileNetV2_x0_5":
|
32 |
+
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams",
|
33 |
+
"MobileNetV2_x0_75":
|
34 |
+
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams",
|
35 |
+
"MobileNetV2":
|
36 |
+
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams",
|
37 |
+
"MobileNetV2_x1_5":
|
38 |
+
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams",
|
39 |
+
"MobileNetV2_x2_0":
|
40 |
+
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams"
|
41 |
+
}
|
42 |
+
|
43 |
+
__all__ = ["MobileNetV2"]
|
44 |
+
|
45 |
+
|
46 |
+
class ConvBNLayer(nn.Layer):
|
47 |
+
def __init__(self,
|
48 |
+
num_channels,
|
49 |
+
filter_size,
|
50 |
+
num_filters,
|
51 |
+
stride,
|
52 |
+
padding,
|
53 |
+
channels=None,
|
54 |
+
num_groups=1,
|
55 |
+
name=None,
|
56 |
+
use_cudnn=True):
|
57 |
+
super(ConvBNLayer, self).__init__()
|
58 |
+
|
59 |
+
self._conv = Conv2D(
|
60 |
+
in_channels=num_channels,
|
61 |
+
out_channels=num_filters,
|
62 |
+
kernel_size=filter_size,
|
63 |
+
stride=stride,
|
64 |
+
padding=padding,
|
65 |
+
groups=num_groups,
|
66 |
+
weight_attr=ParamAttr(name=name + "_weights"),
|
67 |
+
bias_attr=False)
|
68 |
+
|
69 |
+
self._batch_norm = BatchNorm(
|
70 |
+
num_filters,
|
71 |
+
param_attr=ParamAttr(name=name + "_bn_scale"),
|
72 |
+
bias_attr=ParamAttr(name=name + "_bn_offset"),
|
73 |
+
moving_mean_name=name + "_bn_mean",
|
74 |
+
moving_variance_name=name + "_bn_variance")
|
75 |
+
|
76 |
+
def forward(self, inputs, if_act=True):
|
77 |
+
y = self._conv(inputs)
|
78 |
+
y = self._batch_norm(y)
|
79 |
+
if if_act:
|
80 |
+
y = F.relu6(y)
|
81 |
+
return y
|
82 |
+
|
83 |
+
|
84 |
+
class InvertedResidualUnit(nn.Layer):
|
85 |
+
def __init__(self, num_channels, num_in_filter, num_filters, stride,
|
86 |
+
filter_size, padding, expansion_factor, name):
|
87 |
+
super(InvertedResidualUnit, self).__init__()
|
88 |
+
num_expfilter = int(round(num_in_filter * expansion_factor))
|
89 |
+
self._expand_conv = ConvBNLayer(
|
90 |
+
num_channels=num_channels,
|
91 |
+
num_filters=num_expfilter,
|
92 |
+
filter_size=1,
|
93 |
+
stride=1,
|
94 |
+
padding=0,
|
95 |
+
num_groups=1,
|
96 |
+
name=name + "_expand")
|
97 |
+
|
98 |
+
self._bottleneck_conv = ConvBNLayer(
|
99 |
+
num_channels=num_expfilter,
|
100 |
+
num_filters=num_expfilter,
|
101 |
+
filter_size=filter_size,
|
102 |
+
stride=stride,
|
103 |
+
padding=padding,
|
104 |
+
num_groups=num_expfilter,
|
105 |
+
use_cudnn=False,
|
106 |
+
name=name + "_dwise")
|
107 |
+
|
108 |
+
self._linear_conv = ConvBNLayer(
|
109 |
+
num_channels=num_expfilter,
|
110 |
+
num_filters=num_filters,
|
111 |
+
filter_size=1,
|
112 |
+
stride=1,
|
113 |
+
padding=0,
|
114 |
+
num_groups=1,
|
115 |
+
name=name + "_linear")
|
116 |
+
|
117 |
+
def forward(self, inputs, ifshortcut):
|
118 |
+
y = self._expand_conv(inputs, if_act=True)
|
119 |
+
y = self._bottleneck_conv(y, if_act=True)
|
120 |
+
y = self._linear_conv(y, if_act=False)
|
121 |
+
if ifshortcut:
|
122 |
+
y = paddle.add(inputs, y)
|
123 |
+
return y
|
124 |
+
|
125 |
+
|
126 |
+
class InvresiBlocks(nn.Layer):
|
127 |
+
def __init__(self, in_c, t, c, n, s, name):
|
128 |
+
super(InvresiBlocks, self).__init__()
|
129 |
+
|
130 |
+
self._first_block = InvertedResidualUnit(
|
131 |
+
num_channels=in_c,
|
132 |
+
num_in_filter=in_c,
|
133 |
+
num_filters=c,
|
134 |
+
stride=s,
|
135 |
+
filter_size=3,
|
136 |
+
padding=1,
|
137 |
+
expansion_factor=t,
|
138 |
+
name=name + "_1")
|
139 |
+
|
140 |
+
self._block_list = []
|
141 |
+
for i in range(1, n):
|
142 |
+
block = self.add_sublayer(
|
143 |
+
name + "_" + str(i + 1),
|
144 |
+
sublayer=InvertedResidualUnit(
|
145 |
+
num_channels=c,
|
146 |
+
num_in_filter=c,
|
147 |
+
num_filters=c,
|
148 |
+
stride=1,
|
149 |
+
filter_size=3,
|
150 |
+
padding=1,
|
151 |
+
expansion_factor=t,
|
152 |
+
name=name + "_" + str(i + 1)))
|
153 |
+
self._block_list.append(block)
|
154 |
+
|
155 |
+
def forward(self, inputs):
|
156 |
+
y = self._first_block(inputs, ifshortcut=False)
|
157 |
+
for block in self._block_list:
|
158 |
+
y = block(y, ifshortcut=True)
|
159 |
+
return y
|
160 |
+
|
161 |
+
|
162 |
+
@manager.BACKBONES.add_component
|
163 |
+
class MobileNet(nn.Layer):
|
164 |
+
def __init__(self,
|
165 |
+
input_channels=3,
|
166 |
+
scale=1.0,
|
167 |
+
pretrained=None,
|
168 |
+
prefix_name=""):
|
169 |
+
super(MobileNet, self).__init__()
|
170 |
+
self.scale = scale
|
171 |
+
|
172 |
+
bottleneck_params_list = [
|
173 |
+
(1, 16, 1, 1),
|
174 |
+
(6, 24, 2, 2),
|
175 |
+
(6, 32, 3, 2),
|
176 |
+
(6, 64, 4, 2),
|
177 |
+
(6, 96, 3, 1),
|
178 |
+
(6, 160, 3, 2),
|
179 |
+
(6, 320, 1, 1),
|
180 |
+
]
|
181 |
+
|
182 |
+
self.conv1 = ConvBNLayer(
|
183 |
+
num_channels=input_channels,
|
184 |
+
num_filters=int(32 * scale),
|
185 |
+
filter_size=3,
|
186 |
+
stride=2,
|
187 |
+
padding=1,
|
188 |
+
name=prefix_name + "conv1_1")
|
189 |
+
|
190 |
+
self.block_list = []
|
191 |
+
i = 1
|
192 |
+
in_c = int(32 * scale)
|
193 |
+
for layer_setting in bottleneck_params_list:
|
194 |
+
t, c, n, s = layer_setting
|
195 |
+
i += 1
|
196 |
+
block = self.add_sublayer(
|
197 |
+
prefix_name + "conv" + str(i),
|
198 |
+
sublayer=InvresiBlocks(
|
199 |
+
in_c=in_c,
|
200 |
+
t=t,
|
201 |
+
c=int(c * scale),
|
202 |
+
n=n,
|
203 |
+
s=s,
|
204 |
+
name=prefix_name + "conv" + str(i)))
|
205 |
+
self.block_list.append(block)
|
206 |
+
in_c = int(c * scale)
|
207 |
+
|
208 |
+
self.out_c = int(1280 * scale) if scale > 1.0 else 1280
|
209 |
+
self.conv9 = ConvBNLayer(
|
210 |
+
num_channels=in_c,
|
211 |
+
num_filters=self.out_c,
|
212 |
+
filter_size=1,
|
213 |
+
stride=1,
|
214 |
+
padding=0,
|
215 |
+
name=prefix_name + "conv9")
|
216 |
+
|
217 |
+
self.feat_channels = [int(i * scale) for i in [16, 24, 32, 96, 1280]]
|
218 |
+
self.pretrained = pretrained
|
219 |
+
self.init_weight()
|
220 |
+
|
221 |
+
def forward(self, inputs):
|
222 |
+
feat_list = []
|
223 |
+
y = self.conv1(inputs, if_act=True)
|
224 |
+
|
225 |
+
block_index = 0
|
226 |
+
for block in self.block_list:
|
227 |
+
y = block(y)
|
228 |
+
if block_index in [0, 1, 2, 4]:
|
229 |
+
feat_list.append(y)
|
230 |
+
block_index += 1
|
231 |
+
y = self.conv9(y, if_act=True)
|
232 |
+
feat_list.append(y)
|
233 |
+
return feat_list
|
234 |
+
|
235 |
+
def init_weight(self):
|
236 |
+
utils.load_pretrained_model(self, self.pretrained)
|
237 |
+
|
238 |
+
|
239 |
+
@manager.BACKBONES.add_component
|
240 |
+
def MobileNetV2(**kwargs):
|
241 |
+
model = MobileNet(scale=1.0, **kwargs)
|
242 |
+
return model
|
ppmatting/models/backbone/resnet_vd.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import paddle
|
16 |
+
import paddle.nn as nn
|
17 |
+
import paddle.nn.functional as F
|
18 |
+
|
19 |
+
from paddleseg.cvlibs import manager
|
20 |
+
from paddleseg.models import layers
|
21 |
+
from paddleseg.utils import utils
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
"ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd"
|
25 |
+
]
|
26 |
+
|
27 |
+
|
28 |
+
class ConvBNLayer(nn.Layer):
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
in_channels,
|
32 |
+
out_channels,
|
33 |
+
kernel_size,
|
34 |
+
stride=1,
|
35 |
+
dilation=1,
|
36 |
+
groups=1,
|
37 |
+
is_vd_mode=False,
|
38 |
+
act=None, ):
|
39 |
+
super(ConvBNLayer, self).__init__()
|
40 |
+
|
41 |
+
self.is_vd_mode = is_vd_mode
|
42 |
+
self._pool2d_avg = nn.AvgPool2D(
|
43 |
+
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
44 |
+
self._conv = nn.Conv2D(
|
45 |
+
in_channels=in_channels,
|
46 |
+
out_channels=out_channels,
|
47 |
+
kernel_size=kernel_size,
|
48 |
+
stride=stride,
|
49 |
+
padding=(kernel_size - 1) // 2 if dilation == 1 else 0,
|
50 |
+
dilation=dilation,
|
51 |
+
groups=groups,
|
52 |
+
bias_attr=False)
|
53 |
+
|
54 |
+
self._batch_norm = layers.SyncBatchNorm(out_channels)
|
55 |
+
self._act_op = layers.Activation(act=act)
|
56 |
+
|
57 |
+
def forward(self, inputs):
|
58 |
+
if self.is_vd_mode:
|
59 |
+
inputs = self._pool2d_avg(inputs)
|
60 |
+
y = self._conv(inputs)
|
61 |
+
y = self._batch_norm(y)
|
62 |
+
y = self._act_op(y)
|
63 |
+
|
64 |
+
return y
|
65 |
+
|
66 |
+
|
67 |
+
class BottleneckBlock(nn.Layer):
|
68 |
+
def __init__(self,
|
69 |
+
in_channels,
|
70 |
+
out_channels,
|
71 |
+
stride,
|
72 |
+
shortcut=True,
|
73 |
+
if_first=False,
|
74 |
+
dilation=1):
|
75 |
+
super(BottleneckBlock, self).__init__()
|
76 |
+
|
77 |
+
self.conv0 = ConvBNLayer(
|
78 |
+
in_channels=in_channels,
|
79 |
+
out_channels=out_channels,
|
80 |
+
kernel_size=1,
|
81 |
+
act='relu')
|
82 |
+
|
83 |
+
self.dilation = dilation
|
84 |
+
|
85 |
+
self.conv1 = ConvBNLayer(
|
86 |
+
in_channels=out_channels,
|
87 |
+
out_channels=out_channels,
|
88 |
+
kernel_size=3,
|
89 |
+
stride=stride,
|
90 |
+
act='relu',
|
91 |
+
dilation=dilation)
|
92 |
+
self.conv2 = ConvBNLayer(
|
93 |
+
in_channels=out_channels,
|
94 |
+
out_channels=out_channels * 4,
|
95 |
+
kernel_size=1,
|
96 |
+
act=None)
|
97 |
+
|
98 |
+
if not shortcut:
|
99 |
+
self.short = ConvBNLayer(
|
100 |
+
in_channels=in_channels,
|
101 |
+
out_channels=out_channels * 4,
|
102 |
+
kernel_size=1,
|
103 |
+
stride=1,
|
104 |
+
is_vd_mode=False if if_first or stride == 1 else True)
|
105 |
+
|
106 |
+
self.shortcut = shortcut
|
107 |
+
|
108 |
+
def forward(self, inputs):
|
109 |
+
y = self.conv0(inputs)
|
110 |
+
|
111 |
+
####################################################################
|
112 |
+
# If given dilation rate > 1, using corresponding padding.
|
113 |
+
# The performance drops down without the follow padding.
|
114 |
+
if self.dilation > 1:
|
115 |
+
padding = self.dilation
|
116 |
+
y = F.pad(y, [padding, padding, padding, padding])
|
117 |
+
#####################################################################
|
118 |
+
|
119 |
+
conv1 = self.conv1(y)
|
120 |
+
conv2 = self.conv2(conv1)
|
121 |
+
|
122 |
+
if self.shortcut:
|
123 |
+
short = inputs
|
124 |
+
else:
|
125 |
+
short = self.short(inputs)
|
126 |
+
|
127 |
+
y = paddle.add(x=short, y=conv2)
|
128 |
+
y = F.relu(y)
|
129 |
+
return y
|
130 |
+
|
131 |
+
|
132 |
+
class BasicBlock(nn.Layer):
|
133 |
+
def __init__(self,
|
134 |
+
in_channels,
|
135 |
+
out_channels,
|
136 |
+
stride,
|
137 |
+
shortcut=True,
|
138 |
+
if_first=False):
|
139 |
+
super(BasicBlock, self).__init__()
|
140 |
+
self.stride = stride
|
141 |
+
self.conv0 = ConvBNLayer(
|
142 |
+
in_channels=in_channels,
|
143 |
+
out_channels=out_channels,
|
144 |
+
kernel_size=3,
|
145 |
+
stride=stride,
|
146 |
+
act='relu')
|
147 |
+
self.conv1 = ConvBNLayer(
|
148 |
+
in_channels=out_channels,
|
149 |
+
out_channels=out_channels,
|
150 |
+
kernel_size=3,
|
151 |
+
act=None)
|
152 |
+
|
153 |
+
if not shortcut:
|
154 |
+
self.short = ConvBNLayer(
|
155 |
+
in_channels=in_channels,
|
156 |
+
out_channels=out_channels,
|
157 |
+
kernel_size=1,
|
158 |
+
stride=1,
|
159 |
+
is_vd_mode=False if if_first or stride == 1 else True)
|
160 |
+
|
161 |
+
self.shortcut = shortcut
|
162 |
+
|
163 |
+
def forward(self, inputs):
|
164 |
+
y = self.conv0(inputs)
|
165 |
+
conv1 = self.conv1(y)
|
166 |
+
|
167 |
+
if self.shortcut:
|
168 |
+
short = inputs
|
169 |
+
else:
|
170 |
+
short = self.short(inputs)
|
171 |
+
y = paddle.add(x=short, y=conv1)
|
172 |
+
y = F.relu(y)
|
173 |
+
|
174 |
+
return y
|
175 |
+
|
176 |
+
|
177 |
+
class ResNet_vd(nn.Layer):
|
178 |
+
"""
|
179 |
+
The ResNet_vd implementation based on PaddlePaddle.
|
180 |
+
|
181 |
+
The original article refers to Jingdong
|
182 |
+
Tong He, et, al. "Bag of Tricks for Image Classification with Convolutional Neural Networks"
|
183 |
+
(https://arxiv.org/pdf/1812.01187.pdf).
|
184 |
+
|
185 |
+
Args:
|
186 |
+
layers (int, optional): The layers of ResNet_vd. The supported layers are (18, 34, 50, 101, 152, 200). Default: 50.
|
187 |
+
output_stride (int, optional): The stride of output features compared to input images. It is 8 or 16. Default: 8.
|
188 |
+
multi_grid (tuple|list, optional): The grid of stage4. Defult: (1, 1, 1).
|
189 |
+
pretrained (str, optional): The path of pretrained model.
|
190 |
+
|
191 |
+
"""
|
192 |
+
|
193 |
+
def __init__(self,
|
194 |
+
input_channels=3,
|
195 |
+
layers=50,
|
196 |
+
output_stride=32,
|
197 |
+
multi_grid=(1, 1, 1),
|
198 |
+
pretrained=None):
|
199 |
+
super(ResNet_vd, self).__init__()
|
200 |
+
|
201 |
+
self.conv1_logit = None # for gscnn shape stream
|
202 |
+
self.layers = layers
|
203 |
+
supported_layers = [18, 34, 50, 101, 152, 200]
|
204 |
+
assert layers in supported_layers, \
|
205 |
+
"supported layers are {} but input layer is {}".format(
|
206 |
+
supported_layers, layers)
|
207 |
+
|
208 |
+
if layers == 18:
|
209 |
+
depth = [2, 2, 2, 2]
|
210 |
+
elif layers == 34 or layers == 50:
|
211 |
+
depth = [3, 4, 6, 3]
|
212 |
+
elif layers == 101:
|
213 |
+
depth = [3, 4, 23, 3]
|
214 |
+
elif layers == 152:
|
215 |
+
depth = [3, 8, 36, 3]
|
216 |
+
elif layers == 200:
|
217 |
+
depth = [3, 12, 48, 3]
|
218 |
+
num_channels = [64, 256, 512,
|
219 |
+
1024] if layers >= 50 else [64, 64, 128, 256]
|
220 |
+
num_filters = [64, 128, 256, 512]
|
221 |
+
|
222 |
+
# for channels of four returned stages
|
223 |
+
self.feat_channels = [c * 4 for c in num_filters
|
224 |
+
] if layers >= 50 else num_filters
|
225 |
+
self.feat_channels = [64] + self.feat_channels
|
226 |
+
|
227 |
+
dilation_dict = None
|
228 |
+
if output_stride == 8:
|
229 |
+
dilation_dict = {2: 2, 3: 4}
|
230 |
+
elif output_stride == 16:
|
231 |
+
dilation_dict = {3: 2}
|
232 |
+
|
233 |
+
self.conv1_1 = ConvBNLayer(
|
234 |
+
in_channels=input_channels,
|
235 |
+
out_channels=32,
|
236 |
+
kernel_size=3,
|
237 |
+
stride=2,
|
238 |
+
act='relu')
|
239 |
+
self.conv1_2 = ConvBNLayer(
|
240 |
+
in_channels=32,
|
241 |
+
out_channels=32,
|
242 |
+
kernel_size=3,
|
243 |
+
stride=1,
|
244 |
+
act='relu')
|
245 |
+
self.conv1_3 = ConvBNLayer(
|
246 |
+
in_channels=32,
|
247 |
+
out_channels=64,
|
248 |
+
kernel_size=3,
|
249 |
+
stride=1,
|
250 |
+
act='relu')
|
251 |
+
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
252 |
+
|
253 |
+
# self.block_list = []
|
254 |
+
self.stage_list = []
|
255 |
+
if layers >= 50:
|
256 |
+
for block in range(len(depth)):
|
257 |
+
shortcut = False
|
258 |
+
block_list = []
|
259 |
+
for i in range(depth[block]):
|
260 |
+
if layers in [101, 152] and block == 2:
|
261 |
+
if i == 0:
|
262 |
+
conv_name = "res" + str(block + 2) + "a"
|
263 |
+
else:
|
264 |
+
conv_name = "res" + str(block + 2) + "b" + str(i)
|
265 |
+
else:
|
266 |
+
conv_name = "res" + str(block + 2) + chr(97 + i)
|
267 |
+
|
268 |
+
###############################################################################
|
269 |
+
# Add dilation rate for some segmentation tasks, if dilation_dict is not None.
|
270 |
+
dilation_rate = dilation_dict[
|
271 |
+
block] if dilation_dict and block in dilation_dict else 1
|
272 |
+
|
273 |
+
# Actually block here is 'stage', and i is 'block' in 'stage'
|
274 |
+
# At the stage 4, expand the the dilation_rate if given multi_grid
|
275 |
+
if block == 3:
|
276 |
+
dilation_rate = dilation_rate * multi_grid[i]
|
277 |
+
###############################################################################
|
278 |
+
|
279 |
+
bottleneck_block = self.add_sublayer(
|
280 |
+
'bb_%d_%d' % (block, i),
|
281 |
+
BottleneckBlock(
|
282 |
+
in_channels=num_channels[block]
|
283 |
+
if i == 0 else num_filters[block] * 4,
|
284 |
+
out_channels=num_filters[block],
|
285 |
+
stride=2 if i == 0 and block != 0 and
|
286 |
+
dilation_rate == 1 else 1,
|
287 |
+
shortcut=shortcut,
|
288 |
+
if_first=block == i == 0,
|
289 |
+
dilation=dilation_rate))
|
290 |
+
|
291 |
+
block_list.append(bottleneck_block)
|
292 |
+
shortcut = True
|
293 |
+
self.stage_list.append(block_list)
|
294 |
+
else:
|
295 |
+
for block in range(len(depth)):
|
296 |
+
shortcut = False
|
297 |
+
block_list = []
|
298 |
+
for i in range(depth[block]):
|
299 |
+
conv_name = "res" + str(block + 2) + chr(97 + i)
|
300 |
+
basic_block = self.add_sublayer(
|
301 |
+
'bb_%d_%d' % (block, i),
|
302 |
+
BasicBlock(
|
303 |
+
in_channels=num_channels[block]
|
304 |
+
if i == 0 else num_filters[block],
|
305 |
+
out_channels=num_filters[block],
|
306 |
+
stride=2 if i == 0 and block != 0 else 1,
|
307 |
+
shortcut=shortcut,
|
308 |
+
if_first=block == i == 0))
|
309 |
+
block_list.append(basic_block)
|
310 |
+
shortcut = True
|
311 |
+
self.stage_list.append(block_list)
|
312 |
+
|
313 |
+
self.pretrained = pretrained
|
314 |
+
self.init_weight()
|
315 |
+
|
316 |
+
def forward(self, inputs):
|
317 |
+
feat_list = []
|
318 |
+
y = self.conv1_1(inputs)
|
319 |
+
y = self.conv1_2(y)
|
320 |
+
y = self.conv1_3(y)
|
321 |
+
feat_list.append(y)
|
322 |
+
|
323 |
+
y = self.pool2d_max(y)
|
324 |
+
|
325 |
+
# A feature list saves the output feature map of each stage.
|
326 |
+
for stage in self.stage_list:
|
327 |
+
for block in stage:
|
328 |
+
y = block(y)
|
329 |
+
feat_list.append(y)
|
330 |
+
|
331 |
+
return feat_list
|
332 |
+
|
333 |
+
def init_weight(self):
|
334 |
+
utils.load_pretrained_model(self, self.pretrained)
|
335 |
+
|
336 |
+
|
337 |
+
@manager.BACKBONES.add_component
|
338 |
+
def ResNet18_vd(**args):
|
339 |
+
model = ResNet_vd(layers=18, **args)
|
340 |
+
return model
|
341 |
+
|
342 |
+
|
343 |
+
@manager.BACKBONES.add_component
|
344 |
+
def ResNet34_vd(**args):
|
345 |
+
model = ResNet_vd(layers=34, **args)
|
346 |
+
return model
|
347 |
+
|
348 |
+
|
349 |
+
@manager.BACKBONES.add_component
|
350 |
+
def ResNet50_vd(**args):
|
351 |
+
model = ResNet_vd(layers=50, **args)
|
352 |
+
return model
|
353 |
+
|
354 |
+
|
355 |
+
@manager.BACKBONES.add_component
|
356 |
+
def ResNet101_vd(**args):
|
357 |
+
model = ResNet_vd(layers=101, **args)
|
358 |
+
return model
|
359 |
+
|
360 |
+
|
361 |
+
def ResNet152_vd(**args):
|
362 |
+
model = ResNet_vd(layers=152, **args)
|
363 |
+
return model
|
364 |
+
|
365 |
+
|
366 |
+
def ResNet200_vd(**args):
|
367 |
+
model = ResNet_vd(layers=200, **args)
|
368 |
+
return model
|
ppmatting/models/backbone/vgg.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import paddle
|
16 |
+
from paddle import ParamAttr
|
17 |
+
import paddle.nn as nn
|
18 |
+
import paddle.nn.functional as F
|
19 |
+
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
20 |
+
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
21 |
+
|
22 |
+
from paddleseg.cvlibs import manager
|
23 |
+
from paddleseg.utils import utils
|
24 |
+
|
25 |
+
|
26 |
+
class ConvBlock(nn.Layer):
|
27 |
+
def __init__(self, input_channels, output_channels, groups, name=None):
|
28 |
+
super(ConvBlock, self).__init__()
|
29 |
+
|
30 |
+
self.groups = groups
|
31 |
+
self._conv_1 = Conv2D(
|
32 |
+
in_channels=input_channels,
|
33 |
+
out_channels=output_channels,
|
34 |
+
kernel_size=3,
|
35 |
+
stride=1,
|
36 |
+
padding=1,
|
37 |
+
weight_attr=ParamAttr(name=name + "1_weights"),
|
38 |
+
bias_attr=False)
|
39 |
+
if groups == 2 or groups == 3 or groups == 4:
|
40 |
+
self._conv_2 = Conv2D(
|
41 |
+
in_channels=output_channels,
|
42 |
+
out_channels=output_channels,
|
43 |
+
kernel_size=3,
|
44 |
+
stride=1,
|
45 |
+
padding=1,
|
46 |
+
weight_attr=ParamAttr(name=name + "2_weights"),
|
47 |
+
bias_attr=False)
|
48 |
+
if groups == 3 or groups == 4:
|
49 |
+
self._conv_3 = Conv2D(
|
50 |
+
in_channels=output_channels,
|
51 |
+
out_channels=output_channels,
|
52 |
+
kernel_size=3,
|
53 |
+
stride=1,
|
54 |
+
padding=1,
|
55 |
+
weight_attr=ParamAttr(name=name + "3_weights"),
|
56 |
+
bias_attr=False)
|
57 |
+
if groups == 4:
|
58 |
+
self._conv_4 = Conv2D(
|
59 |
+
in_channels=output_channels,
|
60 |
+
out_channels=output_channels,
|
61 |
+
kernel_size=3,
|
62 |
+
stride=1,
|
63 |
+
padding=1,
|
64 |
+
weight_attr=ParamAttr(name=name + "4_weights"),
|
65 |
+
bias_attr=False)
|
66 |
+
|
67 |
+
self._pool = MaxPool2D(
|
68 |
+
kernel_size=2, stride=2, padding=0, return_mask=True)
|
69 |
+
|
70 |
+
def forward(self, inputs):
|
71 |
+
x = self._conv_1(inputs)
|
72 |
+
x = F.relu(x)
|
73 |
+
if self.groups == 2 or self.groups == 3 or self.groups == 4:
|
74 |
+
x = self._conv_2(x)
|
75 |
+
x = F.relu(x)
|
76 |
+
if self.groups == 3 or self.groups == 4:
|
77 |
+
x = self._conv_3(x)
|
78 |
+
x = F.relu(x)
|
79 |
+
if self.groups == 4:
|
80 |
+
x = self._conv_4(x)
|
81 |
+
x = F.relu(x)
|
82 |
+
skip = x
|
83 |
+
x, max_indices = self._pool(x)
|
84 |
+
return x, max_indices, skip
|
85 |
+
|
86 |
+
|
87 |
+
class VGGNet(nn.Layer):
|
88 |
+
def __init__(self, input_channels=3, layers=11, pretrained=None):
|
89 |
+
super(VGGNet, self).__init__()
|
90 |
+
self.pretrained = pretrained
|
91 |
+
|
92 |
+
self.layers = layers
|
93 |
+
self.vgg_configure = {
|
94 |
+
11: [1, 1, 2, 2, 2],
|
95 |
+
13: [2, 2, 2, 2, 2],
|
96 |
+
16: [2, 2, 3, 3, 3],
|
97 |
+
19: [2, 2, 4, 4, 4]
|
98 |
+
}
|
99 |
+
assert self.layers in self.vgg_configure.keys(), \
|
100 |
+
"supported layers are {} but input layer is {}".format(
|
101 |
+
self.vgg_configure.keys(), layers)
|
102 |
+
self.groups = self.vgg_configure[self.layers]
|
103 |
+
|
104 |
+
# matting的第一层卷积输入为4通道,初始化是直接初始化为0
|
105 |
+
self._conv_block_1 = ConvBlock(
|
106 |
+
input_channels, 64, self.groups[0], name="conv1_")
|
107 |
+
self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_")
|
108 |
+
self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_")
|
109 |
+
self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_")
|
110 |
+
self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_")
|
111 |
+
|
112 |
+
# 这一层的初始化需要利用vgg fc6的参数转换后进行初始化,可以暂时不考虑初始化
|
113 |
+
self._conv_6 = Conv2D(
|
114 |
+
512, 512, kernel_size=3, padding=1, bias_attr=False)
|
115 |
+
|
116 |
+
self.init_weight()
|
117 |
+
|
118 |
+
def forward(self, inputs):
|
119 |
+
fea_list = []
|
120 |
+
ids_list = []
|
121 |
+
x, ids, skip = self._conv_block_1(inputs)
|
122 |
+
fea_list.append(skip)
|
123 |
+
ids_list.append(ids)
|
124 |
+
x, ids, skip = self._conv_block_2(x)
|
125 |
+
fea_list.append(skip)
|
126 |
+
ids_list.append(ids)
|
127 |
+
x, ids, skip = self._conv_block_3(x)
|
128 |
+
fea_list.append(skip)
|
129 |
+
ids_list.append(ids)
|
130 |
+
x, ids, skip = self._conv_block_4(x)
|
131 |
+
fea_list.append(skip)
|
132 |
+
ids_list.append(ids)
|
133 |
+
x, ids, skip = self._conv_block_5(x)
|
134 |
+
fea_list.append(skip)
|
135 |
+
ids_list.append(ids)
|
136 |
+
x = F.relu(self._conv_6(x))
|
137 |
+
fea_list.append(x)
|
138 |
+
return fea_list
|
139 |
+
|
140 |
+
def init_weight(self):
|
141 |
+
if self.pretrained is not None:
|
142 |
+
utils.load_pretrained_model(self, self.pretrained)
|
143 |
+
|
144 |
+
|
145 |
+
@manager.BACKBONES.add_component
|
146 |
+
def VGG11(**args):
|
147 |
+
model = VGGNet(layers=11, **args)
|
148 |
+
return model
|
149 |
+
|
150 |
+
|
151 |
+
@manager.BACKBONES.add_component
|
152 |
+
def VGG13(**args):
|
153 |
+
model = VGGNet(layers=13, **args)
|
154 |
+
return model
|
155 |
+
|
156 |
+
|
157 |
+
@manager.BACKBONES.add_component
|
158 |
+
def VGG16(**args):
|
159 |
+
model = VGGNet(layers=16, **args)
|
160 |
+
return model
|
161 |
+
|
162 |
+
|
163 |
+
@manager.BACKBONES.add_component
|
164 |
+
def VGG19(**args):
|
165 |
+
model = VGGNet(layers=19, **args)
|
166 |
+
return model
|
ppmatting/models/dim.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from collections import defaultdict
|
16 |
+
import paddle
|
17 |
+
import paddle.nn as nn
|
18 |
+
import paddle.nn.functional as F
|
19 |
+
from paddleseg.models import layers
|
20 |
+
from paddleseg import utils
|
21 |
+
from paddleseg.cvlibs import manager
|
22 |
+
|
23 |
+
from ppmatting.models.losses import MRSD
|
24 |
+
|
25 |
+
|
26 |
+
@manager.MODELS.add_component
|
27 |
+
class DIM(nn.Layer):
|
28 |
+
"""
|
29 |
+
The DIM implementation based on PaddlePaddle.
|
30 |
+
|
31 |
+
The original article refers to
|
32 |
+
Ning Xu, et, al. "Deep Image Matting"
|
33 |
+
(https://arxiv.org/pdf/1908.07919.pdf).
|
34 |
+
|
35 |
+
Args:
|
36 |
+
backbone: backbone model.
|
37 |
+
stage (int, optional): The stage of model. Defautl: 3.
|
38 |
+
decoder_input_channels(int, optional): The channel of decoder input. Default: 512.
|
39 |
+
pretrained(str, optional): The path of pretrianed model. Defautl: None.
|
40 |
+
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self,
|
44 |
+
backbone,
|
45 |
+
stage=3,
|
46 |
+
decoder_input_channels=512,
|
47 |
+
pretrained=None):
|
48 |
+
super().__init__()
|
49 |
+
self.backbone = backbone
|
50 |
+
self.pretrained = pretrained
|
51 |
+
self.stage = stage
|
52 |
+
self.loss_func_dict = None
|
53 |
+
|
54 |
+
decoder_output_channels = [64, 128, 256, 512]
|
55 |
+
self.decoder = Decoder(
|
56 |
+
input_channels=decoder_input_channels,
|
57 |
+
output_channels=decoder_output_channels)
|
58 |
+
if self.stage == 2:
|
59 |
+
for param in self.backbone.parameters():
|
60 |
+
param.stop_gradient = True
|
61 |
+
for param in self.decoder.parameters():
|
62 |
+
param.stop_gradient = True
|
63 |
+
if self.stage >= 2:
|
64 |
+
self.refine = Refine()
|
65 |
+
self.init_weight()
|
66 |
+
|
67 |
+
def forward(self, inputs):
|
68 |
+
input_shape = paddle.shape(inputs['img'])[-2:]
|
69 |
+
x = paddle.concat([inputs['img'], inputs['trimap'] / 255], axis=1)
|
70 |
+
fea_list = self.backbone(x)
|
71 |
+
|
72 |
+
# decoder stage
|
73 |
+
up_shape = []
|
74 |
+
for i in range(5):
|
75 |
+
up_shape.append(paddle.shape(fea_list[i])[-2:])
|
76 |
+
alpha_raw = self.decoder(fea_list, up_shape)
|
77 |
+
alpha_raw = F.interpolate(
|
78 |
+
alpha_raw, input_shape, mode='bilinear', align_corners=False)
|
79 |
+
logit_dict = {'alpha_raw': alpha_raw}
|
80 |
+
if self.stage < 2:
|
81 |
+
return logit_dict
|
82 |
+
|
83 |
+
if self.stage >= 2:
|
84 |
+
# refine stage
|
85 |
+
refine_input = paddle.concat([inputs['img'], alpha_raw], axis=1)
|
86 |
+
alpha_refine = self.refine(refine_input)
|
87 |
+
|
88 |
+
# finally alpha
|
89 |
+
alpha_pred = alpha_refine + alpha_raw
|
90 |
+
alpha_pred = F.interpolate(
|
91 |
+
alpha_pred, input_shape, mode='bilinear', align_corners=False)
|
92 |
+
if not self.training:
|
93 |
+
alpha_pred = paddle.clip(alpha_pred, min=0, max=1)
|
94 |
+
logit_dict['alpha_pred'] = alpha_pred
|
95 |
+
if self.training:
|
96 |
+
loss_dict = self.loss(logit_dict, inputs)
|
97 |
+
return logit_dict, loss_dict
|
98 |
+
else:
|
99 |
+
return alpha_pred
|
100 |
+
|
101 |
+
def loss(self, logit_dict, label_dict, loss_func_dict=None):
|
102 |
+
if loss_func_dict is None:
|
103 |
+
if self.loss_func_dict is None:
|
104 |
+
self.loss_func_dict = defaultdict(list)
|
105 |
+
self.loss_func_dict['alpha_raw'].append(MRSD())
|
106 |
+
self.loss_func_dict['comp'].append(MRSD())
|
107 |
+
self.loss_func_dict['alpha_pred'].append(MRSD())
|
108 |
+
else:
|
109 |
+
self.loss_func_dict = loss_func_dict
|
110 |
+
|
111 |
+
loss = {}
|
112 |
+
mask = label_dict['trimap'] == 128
|
113 |
+
loss['all'] = 0
|
114 |
+
|
115 |
+
if self.stage != 2:
|
116 |
+
loss['alpha_raw'] = self.loss_func_dict['alpha_raw'][0](
|
117 |
+
logit_dict['alpha_raw'], label_dict['alpha'], mask)
|
118 |
+
loss['alpha_raw'] = 0.5 * loss['alpha_raw']
|
119 |
+
loss['all'] = loss['all'] + loss['alpha_raw']
|
120 |
+
|
121 |
+
if self.stage == 1 or self.stage == 3:
|
122 |
+
comp_pred = logit_dict['alpha_raw'] * label_dict['fg'] + \
|
123 |
+
(1 - logit_dict['alpha_raw']) * label_dict['bg']
|
124 |
+
loss['comp'] = self.loss_func_dict['comp'][0](
|
125 |
+
comp_pred, label_dict['img'], mask)
|
126 |
+
loss['comp'] = 0.5 * loss['comp']
|
127 |
+
loss['all'] = loss['all'] + loss['comp']
|
128 |
+
|
129 |
+
if self.stage == 2 or self.stage == 3:
|
130 |
+
loss['alpha_pred'] = self.loss_func_dict['alpha_pred'][0](
|
131 |
+
logit_dict['alpha_pred'], label_dict['alpha'], mask)
|
132 |
+
loss['all'] = loss['all'] + loss['alpha_pred']
|
133 |
+
|
134 |
+
return loss
|
135 |
+
|
136 |
+
def init_weight(self):
|
137 |
+
if self.pretrained is not None:
|
138 |
+
utils.load_entire_model(self, self.pretrained)
|
139 |
+
|
140 |
+
|
141 |
+
# bilinear interpolate skip connect
|
142 |
+
class Up(nn.Layer):
|
143 |
+
def __init__(self, input_channels, output_channels):
|
144 |
+
super().__init__()
|
145 |
+
self.conv = layers.ConvBNReLU(
|
146 |
+
input_channels,
|
147 |
+
output_channels,
|
148 |
+
kernel_size=5,
|
149 |
+
padding=2,
|
150 |
+
bias_attr=False)
|
151 |
+
|
152 |
+
def forward(self, x, skip, output_shape):
|
153 |
+
x = F.interpolate(
|
154 |
+
x, size=output_shape, mode='bilinear', align_corners=False)
|
155 |
+
x = x + skip
|
156 |
+
x = self.conv(x)
|
157 |
+
x = F.relu(x)
|
158 |
+
|
159 |
+
return x
|
160 |
+
|
161 |
+
|
162 |
+
class Decoder(nn.Layer):
|
163 |
+
def __init__(self, input_channels, output_channels=(64, 128, 256, 512)):
|
164 |
+
super().__init__()
|
165 |
+
self.deconv6 = nn.Conv2D(
|
166 |
+
input_channels, input_channels, kernel_size=1, bias_attr=False)
|
167 |
+
self.deconv5 = Up(input_channels, output_channels[-1])
|
168 |
+
self.deconv4 = Up(output_channels[-1], output_channels[-2])
|
169 |
+
self.deconv3 = Up(output_channels[-2], output_channels[-3])
|
170 |
+
self.deconv2 = Up(output_channels[-3], output_channels[-4])
|
171 |
+
self.deconv1 = Up(output_channels[-4], 64)
|
172 |
+
|
173 |
+
self.alpha_conv = nn.Conv2D(
|
174 |
+
64, 1, kernel_size=5, padding=2, bias_attr=False)
|
175 |
+
|
176 |
+
def forward(self, fea_list, shape_list):
|
177 |
+
x = fea_list[-1]
|
178 |
+
x = self.deconv6(x)
|
179 |
+
x = self.deconv5(x, fea_list[4], shape_list[4])
|
180 |
+
x = self.deconv4(x, fea_list[3], shape_list[3])
|
181 |
+
x = self.deconv3(x, fea_list[2], shape_list[2])
|
182 |
+
x = self.deconv2(x, fea_list[1], shape_list[1])
|
183 |
+
x = self.deconv1(x, fea_list[0], shape_list[0])
|
184 |
+
alpha = self.alpha_conv(x)
|
185 |
+
alpha = F.sigmoid(alpha)
|
186 |
+
|
187 |
+
return alpha
|
188 |
+
|
189 |
+
|
190 |
+
class Refine(nn.Layer):
|
191 |
+
def __init__(self):
|
192 |
+
super().__init__()
|
193 |
+
self.conv1 = layers.ConvBNReLU(
|
194 |
+
4, 64, kernel_size=3, padding=1, bias_attr=False)
|
195 |
+
self.conv2 = layers.ConvBNReLU(
|
196 |
+
64, 64, kernel_size=3, padding=1, bias_attr=False)
|
197 |
+
self.conv3 = layers.ConvBNReLU(
|
198 |
+
64, 64, kernel_size=3, padding=1, bias_attr=False)
|
199 |
+
self.alpha_pred = layers.ConvBNReLU(
|
200 |
+
64, 1, kernel_size=3, padding=1, bias_attr=False)
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
x = self.conv1(x)
|
204 |
+
x = self.conv2(x)
|
205 |
+
x = self.conv3(x)
|
206 |
+
alpha = self.alpha_pred(x)
|
207 |
+
|
208 |
+
return alpha
|
ppmatting/models/gca.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# The gca code was heavily based on https://github.com/Yaoyi-Li/GCA-Matting
|
16 |
+
# and https://github.com/open-mmlab/mmediting
|
17 |
+
|
18 |
+
import paddle
|
19 |
+
import paddle.nn as nn
|
20 |
+
import paddle.nn.functional as F
|
21 |
+
from paddleseg.models import layers
|
22 |
+
from paddleseg import utils
|
23 |
+
from paddleseg.cvlibs import manager, param_init
|
24 |
+
|
25 |
+
from ppmatting.models.layers import GuidedCxtAtten
|
26 |
+
|
27 |
+
|
28 |
+
@manager.MODELS.add_component
|
29 |
+
class GCABaseline(nn.Layer):
|
30 |
+
def __init__(self, backbone, pretrained=None):
|
31 |
+
super().__init__()
|
32 |
+
self.encoder = backbone
|
33 |
+
self.decoder = ResShortCut_D_Dec([2, 3, 3, 2])
|
34 |
+
|
35 |
+
def forward(self, inputs):
|
36 |
+
|
37 |
+
x = paddle.concat([inputs['img'], inputs['trimap'] / 255], axis=1)
|
38 |
+
embedding, mid_fea = self.encoder(x)
|
39 |
+
alpha_pred = self.decoder(embedding, mid_fea)
|
40 |
+
|
41 |
+
if self.training:
|
42 |
+
logit_dict = {'alpha_pred': alpha_pred, }
|
43 |
+
loss_dict = {}
|
44 |
+
alpha_gt = inputs['alpha']
|
45 |
+
loss_dict["alpha"] = F.l1_loss(alpha_pred, alpha_gt)
|
46 |
+
loss_dict["all"] = loss_dict["alpha"]
|
47 |
+
return logit_dict, loss_dict
|
48 |
+
|
49 |
+
return alpha_pred
|
50 |
+
|
51 |
+
|
52 |
+
@manager.MODELS.add_component
|
53 |
+
class GCA(GCABaseline):
|
54 |
+
def __init__(self, backbone, pretrained=None):
|
55 |
+
super().__init__(backbone, pretrained)
|
56 |
+
self.decoder = ResGuidedCxtAtten_Dec([2, 3, 3, 2])
|
57 |
+
|
58 |
+
|
59 |
+
def conv5x5(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
60 |
+
"""5x5 convolution with padding"""
|
61 |
+
return nn.Conv2D(
|
62 |
+
in_planes,
|
63 |
+
out_planes,
|
64 |
+
kernel_size=5,
|
65 |
+
stride=stride,
|
66 |
+
padding=2,
|
67 |
+
groups=groups,
|
68 |
+
bias_attr=False,
|
69 |
+
dilation=dilation)
|
70 |
+
|
71 |
+
|
72 |
+
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
73 |
+
"""3x3 convolution with padding"""
|
74 |
+
return nn.Conv2D(
|
75 |
+
in_planes,
|
76 |
+
out_planes,
|
77 |
+
kernel_size=3,
|
78 |
+
stride=stride,
|
79 |
+
padding=dilation,
|
80 |
+
groups=groups,
|
81 |
+
bias_attr=False,
|
82 |
+
dilation=dilation)
|
83 |
+
|
84 |
+
|
85 |
+
def conv1x1(in_planes, out_planes, stride=1):
|
86 |
+
"""1x1 convolution"""
|
87 |
+
return nn.Conv2D(
|
88 |
+
in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)
|
89 |
+
|
90 |
+
|
91 |
+
class BasicBlock(nn.Layer):
|
92 |
+
expansion = 1
|
93 |
+
|
94 |
+
def __init__(self,
|
95 |
+
inplanes,
|
96 |
+
planes,
|
97 |
+
stride=1,
|
98 |
+
upsample=None,
|
99 |
+
norm_layer=None,
|
100 |
+
large_kernel=False):
|
101 |
+
super().__init__()
|
102 |
+
if norm_layer is None:
|
103 |
+
norm_layer = nn.BatchNorm
|
104 |
+
self.stride = stride
|
105 |
+
conv = conv5x5 if large_kernel else conv3x3
|
106 |
+
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
107 |
+
if self.stride > 1:
|
108 |
+
self.conv1 = nn.utils.spectral_norm(
|
109 |
+
nn.Conv2DTranspose(
|
110 |
+
inplanes,
|
111 |
+
inplanes,
|
112 |
+
kernel_size=4,
|
113 |
+
stride=2,
|
114 |
+
padding=1,
|
115 |
+
bias_attr=False))
|
116 |
+
else:
|
117 |
+
self.conv1 = nn.utils.spectral_norm(conv(inplanes, inplanes))
|
118 |
+
self.bn1 = norm_layer(inplanes)
|
119 |
+
self.activation = nn.LeakyReLU(0.2)
|
120 |
+
self.conv2 = nn.utils.spectral_norm(conv(inplanes, planes))
|
121 |
+
self.bn2 = norm_layer(planes)
|
122 |
+
self.upsample = upsample
|
123 |
+
|
124 |
+
def forward(self, x):
|
125 |
+
identity = x
|
126 |
+
|
127 |
+
out = self.conv1(x)
|
128 |
+
out = self.bn1(out)
|
129 |
+
out = self.activation(out)
|
130 |
+
|
131 |
+
out = self.conv2(out)
|
132 |
+
out = self.bn2(out)
|
133 |
+
|
134 |
+
if self.upsample is not None:
|
135 |
+
identity = self.upsample(x)
|
136 |
+
|
137 |
+
out += identity
|
138 |
+
out = self.activation(out)
|
139 |
+
|
140 |
+
return out
|
141 |
+
|
142 |
+
|
143 |
+
class ResNet_D_Dec(nn.Layer):
|
144 |
+
def __init__(self,
|
145 |
+
layers=[3, 4, 4, 2],
|
146 |
+
norm_layer=None,
|
147 |
+
large_kernel=False,
|
148 |
+
late_downsample=False):
|
149 |
+
super().__init__()
|
150 |
+
|
151 |
+
if norm_layer is None:
|
152 |
+
norm_layer = nn.BatchNorm
|
153 |
+
self._norm_layer = norm_layer
|
154 |
+
self.large_kernel = large_kernel
|
155 |
+
self.kernel_size = 5 if self.large_kernel else 3
|
156 |
+
|
157 |
+
self.inplanes = 512 if layers[0] > 0 else 256
|
158 |
+
self.late_downsample = late_downsample
|
159 |
+
self.midplanes = 64 if late_downsample else 32
|
160 |
+
|
161 |
+
self.conv1 = nn.utils.spectral_norm(
|
162 |
+
nn.Conv2DTranspose(
|
163 |
+
self.midplanes,
|
164 |
+
32,
|
165 |
+
kernel_size=4,
|
166 |
+
stride=2,
|
167 |
+
padding=1,
|
168 |
+
bias_attr=False))
|
169 |
+
self.bn1 = norm_layer(32)
|
170 |
+
self.leaky_relu = nn.LeakyReLU(0.2)
|
171 |
+
self.conv2 = nn.Conv2D(
|
172 |
+
32,
|
173 |
+
1,
|
174 |
+
kernel_size=self.kernel_size,
|
175 |
+
stride=1,
|
176 |
+
padding=self.kernel_size // 2)
|
177 |
+
self.upsample = nn.UpsamplingNearest2D(scale_factor=2)
|
178 |
+
self.tanh = nn.Tanh()
|
179 |
+
self.layer1 = self._make_layer(BasicBlock, 256, layers[0], stride=2)
|
180 |
+
self.layer2 = self._make_layer(BasicBlock, 128, layers[1], stride=2)
|
181 |
+
self.layer3 = self._make_layer(BasicBlock, 64, layers[2], stride=2)
|
182 |
+
self.layer4 = self._make_layer(
|
183 |
+
BasicBlock, self.midplanes, layers[3], stride=2)
|
184 |
+
|
185 |
+
self.init_weight()
|
186 |
+
|
187 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
188 |
+
if blocks == 0:
|
189 |
+
return nn.Sequential(nn.Identity())
|
190 |
+
norm_layer = self._norm_layer
|
191 |
+
upsample = None
|
192 |
+
if stride != 1:
|
193 |
+
upsample = nn.Sequential(
|
194 |
+
nn.UpsamplingNearest2D(scale_factor=2),
|
195 |
+
nn.utils.spectral_norm(
|
196 |
+
conv1x1(self.inplanes, planes * block.expansion)),
|
197 |
+
norm_layer(planes * block.expansion), )
|
198 |
+
elif self.inplanes != planes * block.expansion:
|
199 |
+
upsample = nn.Sequential(
|
200 |
+
nn.utils.spectral_norm(
|
201 |
+
conv1x1(self.inplanes, planes * block.expansion)),
|
202 |
+
norm_layer(planes * block.expansion), )
|
203 |
+
|
204 |
+
layers = [
|
205 |
+
block(self.inplanes, planes, stride, upsample, norm_layer,
|
206 |
+
self.large_kernel)
|
207 |
+
]
|
208 |
+
self.inplanes = planes * block.expansion
|
209 |
+
for _ in range(1, blocks):
|
210 |
+
layers.append(
|
211 |
+
block(
|
212 |
+
self.inplanes,
|
213 |
+
planes,
|
214 |
+
norm_layer=norm_layer,
|
215 |
+
large_kernel=self.large_kernel))
|
216 |
+
|
217 |
+
return nn.Sequential(*layers)
|
218 |
+
|
219 |
+
def forward(self, x, mid_fea):
|
220 |
+
x = self.layer1(x) # N x 256 x 32 x 32
|
221 |
+
print(x.shape)
|
222 |
+
x = self.layer2(x) # N x 128 x 64 x 64
|
223 |
+
print(x.shape)
|
224 |
+
x = self.layer3(x) # N x 64 x 128 x 128
|
225 |
+
print(x.shape)
|
226 |
+
x = self.layer4(x) # N x 32 x 256 x 256
|
227 |
+
print(x.shape)
|
228 |
+
x = self.conv1(x)
|
229 |
+
x = self.bn1(x)
|
230 |
+
x = self.leaky_relu(x)
|
231 |
+
x = self.conv2(x)
|
232 |
+
|
233 |
+
alpha = (self.tanh(x) + 1.0) / 2.0
|
234 |
+
|
235 |
+
return alpha
|
236 |
+
|
237 |
+
def init_weight(self):
|
238 |
+
for layer in self.sublayers():
|
239 |
+
if isinstance(layer, nn.Conv2D):
|
240 |
+
|
241 |
+
if hasattr(layer, "weight_orig"):
|
242 |
+
param = layer.weight_orig
|
243 |
+
else:
|
244 |
+
param = layer.weight
|
245 |
+
param_init.xavier_uniform(param)
|
246 |
+
|
247 |
+
elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
|
248 |
+
param_init.constant_init(layer.weight, value=1.0)
|
249 |
+
param_init.constant_init(layer.bias, value=0.0)
|
250 |
+
|
251 |
+
elif isinstance(layer, BasicBlock):
|
252 |
+
param_init.constant_init(layer.bn2.weight, value=0.0)
|
253 |
+
|
254 |
+
|
255 |
+
class ResShortCut_D_Dec(ResNet_D_Dec):
|
256 |
+
def __init__(self,
|
257 |
+
layers,
|
258 |
+
norm_layer=None,
|
259 |
+
large_kernel=False,
|
260 |
+
late_downsample=False):
|
261 |
+
super().__init__(
|
262 |
+
layers, norm_layer, large_kernel, late_downsample=late_downsample)
|
263 |
+
|
264 |
+
def forward(self, x, mid_fea):
|
265 |
+
fea1, fea2, fea3, fea4, fea5 = mid_fea['shortcut']
|
266 |
+
x = self.layer1(x) + fea5
|
267 |
+
x = self.layer2(x) + fea4
|
268 |
+
x = self.layer3(x) + fea3
|
269 |
+
x = self.layer4(x) + fea2
|
270 |
+
x = self.conv1(x)
|
271 |
+
x = self.bn1(x)
|
272 |
+
x = self.leaky_relu(x) + fea1
|
273 |
+
x = self.conv2(x)
|
274 |
+
|
275 |
+
alpha = (self.tanh(x) + 1.0) / 2.0
|
276 |
+
|
277 |
+
return alpha
|
278 |
+
|
279 |
+
|
280 |
+
class ResGuidedCxtAtten_Dec(ResNet_D_Dec):
|
281 |
+
def __init__(self,
|
282 |
+
layers,
|
283 |
+
norm_layer=None,
|
284 |
+
large_kernel=False,
|
285 |
+
late_downsample=False):
|
286 |
+
super().__init__(
|
287 |
+
layers, norm_layer, large_kernel, late_downsample=late_downsample)
|
288 |
+
self.gca = GuidedCxtAtten(128, 128)
|
289 |
+
|
290 |
+
def forward(self, x, mid_fea):
|
291 |
+
fea1, fea2, fea3, fea4, fea5 = mid_fea['shortcut']
|
292 |
+
im = mid_fea['image_fea']
|
293 |
+
x = self.layer1(x) + fea5 # N x 256 x 32 x 32
|
294 |
+
x = self.layer2(x) + fea4 # N x 128 x 64 x 64
|
295 |
+
x = self.gca(im, x, mid_fea['unknown']) # contextual attention
|
296 |
+
x = self.layer3(x) + fea3 # N x 64 x 128 x 128
|
297 |
+
x = self.layer4(x) + fea2 # N x 32 x 256 x 256
|
298 |
+
x = self.conv1(x)
|
299 |
+
x = self.bn1(x)
|
300 |
+
x = self.leaky_relu(x) + fea1
|
301 |
+
x = self.conv2(x)
|
302 |
+
|
303 |
+
alpha = (self.tanh(x) + 1.0) / 2.0
|
304 |
+
|
305 |
+
return alpha
|
ppmatting/models/human_matting.py
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from collections import defaultdict
|
16 |
+
import time
|
17 |
+
|
18 |
+
import paddle
|
19 |
+
import paddle.nn as nn
|
20 |
+
import paddle.nn.functional as F
|
21 |
+
import paddleseg
|
22 |
+
from paddleseg.models import layers
|
23 |
+
from paddleseg import utils
|
24 |
+
from paddleseg.cvlibs import manager
|
25 |
+
|
26 |
+
from ppmatting.models.losses import MRSD
|
27 |
+
|
28 |
+
|
29 |
+
def conv_up_psp(in_channels, out_channels, up_sample):
|
30 |
+
return nn.Sequential(
|
31 |
+
layers.ConvBNReLU(
|
32 |
+
in_channels, out_channels, 3, padding=1),
|
33 |
+
nn.Upsample(
|
34 |
+
scale_factor=up_sample, mode='bilinear', align_corners=False))
|
35 |
+
|
36 |
+
|
37 |
+
@manager.MODELS.add_component
|
38 |
+
class HumanMatting(nn.Layer):
|
39 |
+
"""A model for """
|
40 |
+
|
41 |
+
def __init__(self,
|
42 |
+
backbone,
|
43 |
+
pretrained=None,
|
44 |
+
backbone_scale=0.25,
|
45 |
+
refine_kernel_size=3,
|
46 |
+
if_refine=True):
|
47 |
+
super().__init__()
|
48 |
+
if if_refine:
|
49 |
+
if backbone_scale > 0.5:
|
50 |
+
raise ValueError(
|
51 |
+
'Backbone_scale should not be greater than 1/2, but it is {}'
|
52 |
+
.format(backbone_scale))
|
53 |
+
else:
|
54 |
+
backbone_scale = 1
|
55 |
+
|
56 |
+
self.backbone = backbone
|
57 |
+
self.backbone_scale = backbone_scale
|
58 |
+
self.pretrained = pretrained
|
59 |
+
self.if_refine = if_refine
|
60 |
+
if if_refine:
|
61 |
+
self.refiner = Refiner(kernel_size=refine_kernel_size)
|
62 |
+
self.loss_func_dict = None
|
63 |
+
|
64 |
+
self.backbone_channels = backbone.feat_channels
|
65 |
+
######################
|
66 |
+
### Decoder part - Glance
|
67 |
+
######################
|
68 |
+
self.psp_module = layers.PPModule(
|
69 |
+
self.backbone_channels[-1],
|
70 |
+
512,
|
71 |
+
bin_sizes=(1, 3, 5),
|
72 |
+
dim_reduction=False,
|
73 |
+
align_corners=False)
|
74 |
+
self.psp4 = conv_up_psp(512, 256, 2)
|
75 |
+
self.psp3 = conv_up_psp(512, 128, 4)
|
76 |
+
self.psp2 = conv_up_psp(512, 64, 8)
|
77 |
+
self.psp1 = conv_up_psp(512, 64, 16)
|
78 |
+
# stage 5g
|
79 |
+
self.decoder5_g = nn.Sequential(
|
80 |
+
layers.ConvBNReLU(
|
81 |
+
512 + self.backbone_channels[-1], 512, 3, padding=1),
|
82 |
+
layers.ConvBNReLU(
|
83 |
+
512, 512, 3, padding=2, dilation=2),
|
84 |
+
layers.ConvBNReLU(
|
85 |
+
512, 256, 3, padding=2, dilation=2),
|
86 |
+
nn.Upsample(
|
87 |
+
scale_factor=2, mode='bilinear', align_corners=False))
|
88 |
+
# stage 4g
|
89 |
+
self.decoder4_g = nn.Sequential(
|
90 |
+
layers.ConvBNReLU(
|
91 |
+
512, 256, 3, padding=1),
|
92 |
+
layers.ConvBNReLU(
|
93 |
+
256, 256, 3, padding=1),
|
94 |
+
layers.ConvBNReLU(
|
95 |
+
256, 128, 3, padding=1),
|
96 |
+
nn.Upsample(
|
97 |
+
scale_factor=2, mode='bilinear', align_corners=False))
|
98 |
+
# stage 3g
|
99 |
+
self.decoder3_g = nn.Sequential(
|
100 |
+
layers.ConvBNReLU(
|
101 |
+
256, 128, 3, padding=1),
|
102 |
+
layers.ConvBNReLU(
|
103 |
+
128, 128, 3, padding=1),
|
104 |
+
layers.ConvBNReLU(
|
105 |
+
128, 64, 3, padding=1),
|
106 |
+
nn.Upsample(
|
107 |
+
scale_factor=2, mode='bilinear', align_corners=False))
|
108 |
+
# stage 2g
|
109 |
+
self.decoder2_g = nn.Sequential(
|
110 |
+
layers.ConvBNReLU(
|
111 |
+
128, 128, 3, padding=1),
|
112 |
+
layers.ConvBNReLU(
|
113 |
+
128, 128, 3, padding=1),
|
114 |
+
layers.ConvBNReLU(
|
115 |
+
128, 64, 3, padding=1),
|
116 |
+
nn.Upsample(
|
117 |
+
scale_factor=2, mode='bilinear', align_corners=False))
|
118 |
+
# stage 1g
|
119 |
+
self.decoder1_g = nn.Sequential(
|
120 |
+
layers.ConvBNReLU(
|
121 |
+
128, 64, 3, padding=1),
|
122 |
+
layers.ConvBNReLU(
|
123 |
+
64, 64, 3, padding=1),
|
124 |
+
layers.ConvBNReLU(
|
125 |
+
64, 64, 3, padding=1),
|
126 |
+
nn.Upsample(
|
127 |
+
scale_factor=2, mode='bilinear', align_corners=False))
|
128 |
+
# stage 0g
|
129 |
+
self.decoder0_g = nn.Sequential(
|
130 |
+
layers.ConvBNReLU(
|
131 |
+
64, 64, 3, padding=1),
|
132 |
+
layers.ConvBNReLU(
|
133 |
+
64, 64, 3, padding=1),
|
134 |
+
nn.Conv2D(
|
135 |
+
64, 3, 3, padding=1))
|
136 |
+
|
137 |
+
##########################
|
138 |
+
### Decoder part - FOCUS
|
139 |
+
##########################
|
140 |
+
self.bridge_block = nn.Sequential(
|
141 |
+
layers.ConvBNReLU(
|
142 |
+
self.backbone_channels[-1], 512, 3, dilation=2, padding=2),
|
143 |
+
layers.ConvBNReLU(
|
144 |
+
512, 512, 3, dilation=2, padding=2),
|
145 |
+
layers.ConvBNReLU(
|
146 |
+
512, 512, 3, dilation=2, padding=2))
|
147 |
+
# stage 5f
|
148 |
+
self.decoder5_f = nn.Sequential(
|
149 |
+
layers.ConvBNReLU(
|
150 |
+
512 + self.backbone_channels[-1], 512, 3, padding=1),
|
151 |
+
layers.ConvBNReLU(
|
152 |
+
512, 512, 3, padding=2, dilation=2),
|
153 |
+
layers.ConvBNReLU(
|
154 |
+
512, 256, 3, padding=2, dilation=2),
|
155 |
+
nn.Upsample(
|
156 |
+
scale_factor=2, mode='bilinear', align_corners=False))
|
157 |
+
# stage 4f
|
158 |
+
self.decoder4_f = nn.Sequential(
|
159 |
+
layers.ConvBNReLU(
|
160 |
+
256 + self.backbone_channels[-2], 256, 3, padding=1),
|
161 |
+
layers.ConvBNReLU(
|
162 |
+
256, 256, 3, padding=1),
|
163 |
+
layers.ConvBNReLU(
|
164 |
+
256, 128, 3, padding=1),
|
165 |
+
nn.Upsample(
|
166 |
+
scale_factor=2, mode='bilinear', align_corners=False))
|
167 |
+
# stage 3f
|
168 |
+
self.decoder3_f = nn.Sequential(
|
169 |
+
layers.ConvBNReLU(
|
170 |
+
128 + self.backbone_channels[-3], 128, 3, padding=1),
|
171 |
+
layers.ConvBNReLU(
|
172 |
+
128, 128, 3, padding=1),
|
173 |
+
layers.ConvBNReLU(
|
174 |
+
128, 64, 3, padding=1),
|
175 |
+
nn.Upsample(
|
176 |
+
scale_factor=2, mode='bilinear', align_corners=False))
|
177 |
+
# stage 2f
|
178 |
+
self.decoder2_f = nn.Sequential(
|
179 |
+
layers.ConvBNReLU(
|
180 |
+
64 + self.backbone_channels[-4], 128, 3, padding=1),
|
181 |
+
layers.ConvBNReLU(
|
182 |
+
128, 128, 3, padding=1),
|
183 |
+
layers.ConvBNReLU(
|
184 |
+
128, 64, 3, padding=1),
|
185 |
+
nn.Upsample(
|
186 |
+
scale_factor=2, mode='bilinear', align_corners=False))
|
187 |
+
# stage 1f
|
188 |
+
self.decoder1_f = nn.Sequential(
|
189 |
+
layers.ConvBNReLU(
|
190 |
+
64 + self.backbone_channels[-5], 64, 3, padding=1),
|
191 |
+
layers.ConvBNReLU(
|
192 |
+
64, 64, 3, padding=1),
|
193 |
+
layers.ConvBNReLU(
|
194 |
+
64, 64, 3, padding=1),
|
195 |
+
nn.Upsample(
|
196 |
+
scale_factor=2, mode='bilinear', align_corners=False))
|
197 |
+
# stage 0f
|
198 |
+
self.decoder0_f = nn.Sequential(
|
199 |
+
layers.ConvBNReLU(
|
200 |
+
64, 64, 3, padding=1),
|
201 |
+
layers.ConvBNReLU(
|
202 |
+
64, 64, 3, padding=1),
|
203 |
+
nn.Conv2D(
|
204 |
+
64, 1 + 1 + 32, 3, padding=1))
|
205 |
+
self.init_weight()
|
206 |
+
|
207 |
+
def forward(self, data):
|
208 |
+
src = data['img']
|
209 |
+
src_h, src_w = paddle.shape(src)[2:]
|
210 |
+
if self.if_refine:
|
211 |
+
# It is not need when exporting.
|
212 |
+
if isinstance(src_h, paddle.Tensor):
|
213 |
+
if (src_h % 4 != 0) or (src_w % 4) != 0:
|
214 |
+
raise ValueError(
|
215 |
+
'The input image must have width and height that are divisible by 4'
|
216 |
+
)
|
217 |
+
|
218 |
+
# Downsample src for backbone
|
219 |
+
src_sm = F.interpolate(
|
220 |
+
src,
|
221 |
+
scale_factor=self.backbone_scale,
|
222 |
+
mode='bilinear',
|
223 |
+
align_corners=False)
|
224 |
+
|
225 |
+
# Base
|
226 |
+
fea_list = self.backbone(src_sm)
|
227 |
+
##########################
|
228 |
+
### Decoder part - GLANCE
|
229 |
+
##########################
|
230 |
+
#psp: N, 512, H/32, W/32
|
231 |
+
psp = self.psp_module(fea_list[-1])
|
232 |
+
#d6_g: N, 512, H/16, W/16
|
233 |
+
d5_g = self.decoder5_g(paddle.concat((psp, fea_list[-1]), 1))
|
234 |
+
#d5_g: N, 512, H/8, W/8
|
235 |
+
d4_g = self.decoder4_g(paddle.concat((self.psp4(psp), d5_g), 1))
|
236 |
+
#d4_g: N, 256, H/4, W/4
|
237 |
+
d3_g = self.decoder3_g(paddle.concat((self.psp3(psp), d4_g), 1))
|
238 |
+
#d4_g: N, 128, H/2, W/2
|
239 |
+
d2_g = self.decoder2_g(paddle.concat((self.psp2(psp), d3_g), 1))
|
240 |
+
#d2_g: N, 64, H, W
|
241 |
+
d1_g = self.decoder1_g(paddle.concat((self.psp1(psp), d2_g), 1))
|
242 |
+
#d0_g: N, 3, H, W
|
243 |
+
d0_g = self.decoder0_g(d1_g)
|
244 |
+
# The 1st channel is foreground. The 2nd is transition region. The 3rd is background.
|
245 |
+
# glance_sigmoid = F.sigmoid(d0_g)
|
246 |
+
glance_sigmoid = F.softmax(d0_g, axis=1)
|
247 |
+
|
248 |
+
##########################
|
249 |
+
### Decoder part - FOCUS
|
250 |
+
##########################
|
251 |
+
bb = self.bridge_block(fea_list[-1])
|
252 |
+
#bg: N, 512, H/32, W/32
|
253 |
+
d5_f = self.decoder5_f(paddle.concat((bb, fea_list[-1]), 1))
|
254 |
+
#d5_f: N, 256, H/16, W/16
|
255 |
+
d4_f = self.decoder4_f(paddle.concat((d5_f, fea_list[-2]), 1))
|
256 |
+
#d4_f: N, 128, H/8, W/8
|
257 |
+
d3_f = self.decoder3_f(paddle.concat((d4_f, fea_list[-3]), 1))
|
258 |
+
#d3_f: N, 64, H/4, W/4
|
259 |
+
d2_f = self.decoder2_f(paddle.concat((d3_f, fea_list[-4]), 1))
|
260 |
+
#d2_f: N, 64, H/2, W/2
|
261 |
+
d1_f = self.decoder1_f(paddle.concat((d2_f, fea_list[-5]), 1))
|
262 |
+
#d1_f: N, 64, H, W
|
263 |
+
d0_f = self.decoder0_f(d1_f)
|
264 |
+
#d0_f: N, 1, H, W
|
265 |
+
focus_sigmoid = F.sigmoid(d0_f[:, 0:1, :, :])
|
266 |
+
pha_sm = self.fusion(glance_sigmoid, focus_sigmoid)
|
267 |
+
err_sm = d0_f[:, 1:2, :, :]
|
268 |
+
err_sm = paddle.clip(err_sm, 0., 1.)
|
269 |
+
hid_sm = F.relu(d0_f[:, 2:, :, :])
|
270 |
+
|
271 |
+
# Refiner
|
272 |
+
if self.if_refine:
|
273 |
+
pha = self.refiner(
|
274 |
+
src=src, pha=pha_sm, err=err_sm, hid=hid_sm, tri=glance_sigmoid)
|
275 |
+
# Clamp outputs
|
276 |
+
pha = paddle.clip(pha, 0., 1.)
|
277 |
+
|
278 |
+
if self.training:
|
279 |
+
logit_dict = {
|
280 |
+
'glance': glance_sigmoid,
|
281 |
+
'focus': focus_sigmoid,
|
282 |
+
'fusion': pha_sm,
|
283 |
+
'error': err_sm
|
284 |
+
}
|
285 |
+
if self.if_refine:
|
286 |
+
logit_dict['refine'] = pha
|
287 |
+
loss_dict = self.loss(logit_dict, data)
|
288 |
+
return logit_dict, loss_dict
|
289 |
+
else:
|
290 |
+
return pha if self.if_refine else pha_sm
|
291 |
+
|
292 |
+
def loss(self, logit_dict, label_dict, loss_func_dict=None):
|
293 |
+
if loss_func_dict is None:
|
294 |
+
if self.loss_func_dict is None:
|
295 |
+
self.loss_func_dict = defaultdict(list)
|
296 |
+
self.loss_func_dict['glance'].append(nn.NLLLoss())
|
297 |
+
self.loss_func_dict['focus'].append(MRSD())
|
298 |
+
self.loss_func_dict['cm'].append(MRSD())
|
299 |
+
self.loss_func_dict['err'].append(paddleseg.models.MSELoss())
|
300 |
+
self.loss_func_dict['refine'].append(paddleseg.models.L1Loss())
|
301 |
+
else:
|
302 |
+
self.loss_func_dict = loss_func_dict
|
303 |
+
|
304 |
+
loss = {}
|
305 |
+
|
306 |
+
# glance loss computation
|
307 |
+
# get glance label
|
308 |
+
glance_label = F.interpolate(
|
309 |
+
label_dict['trimap'],
|
310 |
+
logit_dict['glance'].shape[2:],
|
311 |
+
mode='nearest',
|
312 |
+
align_corners=False)
|
313 |
+
glance_label_trans = (glance_label == 128).astype('int64')
|
314 |
+
glance_label_bg = (glance_label == 0).astype('int64')
|
315 |
+
glance_label = glance_label_trans + glance_label_bg * 2
|
316 |
+
loss_glance = self.loss_func_dict['glance'][0](
|
317 |
+
paddle.log(logit_dict['glance'] + 1e-6), glance_label.squeeze(1))
|
318 |
+
loss['glance'] = loss_glance
|
319 |
+
|
320 |
+
# focus loss computation
|
321 |
+
focus_label = F.interpolate(
|
322 |
+
label_dict['alpha'],
|
323 |
+
logit_dict['focus'].shape[2:],
|
324 |
+
mode='bilinear',
|
325 |
+
align_corners=False)
|
326 |
+
loss_focus = self.loss_func_dict['focus'][0](
|
327 |
+
logit_dict['focus'], focus_label, glance_label_trans)
|
328 |
+
loss['focus'] = loss_focus
|
329 |
+
|
330 |
+
# collaborative matting loss
|
331 |
+
loss_cm_func = self.loss_func_dict['cm']
|
332 |
+
# fusion_sigmoid loss
|
333 |
+
loss_cm = loss_cm_func[0](logit_dict['fusion'], focus_label)
|
334 |
+
loss['cm'] = loss_cm
|
335 |
+
|
336 |
+
# error loss
|
337 |
+
err = F.interpolate(
|
338 |
+
logit_dict['error'],
|
339 |
+
label_dict['alpha'].shape[2:],
|
340 |
+
mode='bilinear',
|
341 |
+
align_corners=False)
|
342 |
+
err_label = (F.interpolate(
|
343 |
+
logit_dict['fusion'],
|
344 |
+
label_dict['alpha'].shape[2:],
|
345 |
+
mode='bilinear',
|
346 |
+
align_corners=False) - label_dict['alpha']).abs()
|
347 |
+
loss_err = self.loss_func_dict['err'][0](err, err_label)
|
348 |
+
loss['err'] = loss_err
|
349 |
+
|
350 |
+
loss_all = 0.25 * loss_glance + 0.25 * loss_focus + 0.25 * loss_cm + loss_err
|
351 |
+
|
352 |
+
# refine loss
|
353 |
+
if self.if_refine:
|
354 |
+
loss_refine = self.loss_func_dict['refine'][0](logit_dict['refine'],
|
355 |
+
label_dict['alpha'])
|
356 |
+
loss['refine'] = loss_refine
|
357 |
+
loss_all = loss_all + loss_refine
|
358 |
+
|
359 |
+
loss['all'] = loss_all
|
360 |
+
return loss
|
361 |
+
|
362 |
+
def fusion(self, glance_sigmoid, focus_sigmoid):
|
363 |
+
# glance_sigmoid [N, 3, H, W].
|
364 |
+
# In index, 0 is foreground, 1 is transition, 2 is backbone.
|
365 |
+
# After fusion, the foreground is 1, the background is 0, and the transion is between (0, 1).
|
366 |
+
index = paddle.argmax(glance_sigmoid, axis=1, keepdim=True)
|
367 |
+
transition_mask = (index == 1).astype('float32')
|
368 |
+
fg = (index == 0).astype('float32')
|
369 |
+
fusion_sigmoid = focus_sigmoid * transition_mask + fg
|
370 |
+
return fusion_sigmoid
|
371 |
+
|
372 |
+
def init_weight(self):
|
373 |
+
if self.pretrained is not None:
|
374 |
+
utils.load_entire_model(self, self.pretrained)
|
375 |
+
|
376 |
+
|
377 |
+
class Refiner(nn.Layer):
|
378 |
+
'''
|
379 |
+
Refiner refines the coarse output to full resolution.
|
380 |
+
|
381 |
+
Args:
|
382 |
+
kernel_size: The convolution kernel_size. Options: [1, 3]. Default: 3.
|
383 |
+
'''
|
384 |
+
|
385 |
+
def __init__(self, kernel_size=3):
|
386 |
+
super().__init__()
|
387 |
+
if kernel_size not in [1, 3]:
|
388 |
+
raise ValueError("kernel_size must be in [1, 3]")
|
389 |
+
|
390 |
+
self.kernel_size = kernel_size
|
391 |
+
|
392 |
+
channels = [32, 24, 16, 12, 1]
|
393 |
+
self.conv1 = layers.ConvBNReLU(
|
394 |
+
channels[0] + 4 + 3,
|
395 |
+
channels[1],
|
396 |
+
kernel_size,
|
397 |
+
padding=0,
|
398 |
+
bias_attr=False)
|
399 |
+
self.conv2 = layers.ConvBNReLU(
|
400 |
+
channels[1], channels[2], kernel_size, padding=0, bias_attr=False)
|
401 |
+
self.conv3 = layers.ConvBNReLU(
|
402 |
+
channels[2] + 3,
|
403 |
+
channels[3],
|
404 |
+
kernel_size,
|
405 |
+
padding=0,
|
406 |
+
bias_attr=False)
|
407 |
+
self.conv4 = nn.Conv2D(
|
408 |
+
channels[3], channels[4], kernel_size, padding=0, bias_attr=True)
|
409 |
+
|
410 |
+
def forward(self, src, pha, err, hid, tri):
|
411 |
+
'''
|
412 |
+
Args:
|
413 |
+
src: (B, 3, H, W) full resolution source image.
|
414 |
+
pha: (B, 1, Hc, Wc) coarse alpha prediction.
|
415 |
+
err: (B, 1, Hc, Hc) coarse error prediction.
|
416 |
+
hid: (B, 32, Hc, Hc) coarse hidden encoding.
|
417 |
+
tri: (B, 1, Hc, Hc) trimap prediction.
|
418 |
+
'''
|
419 |
+
h_full, w_full = paddle.shape(src)[2:]
|
420 |
+
h_half, w_half = h_full // 2, w_full // 2
|
421 |
+
h_quat, w_quat = h_full // 4, w_full // 4
|
422 |
+
|
423 |
+
x = paddle.concat([hid, pha, tri], axis=1)
|
424 |
+
x = F.interpolate(
|
425 |
+
x,
|
426 |
+
paddle.concat((h_half, w_half)),
|
427 |
+
mode='bilinear',
|
428 |
+
align_corners=False)
|
429 |
+
y = F.interpolate(
|
430 |
+
src,
|
431 |
+
paddle.concat((h_half, w_half)),
|
432 |
+
mode='bilinear',
|
433 |
+
align_corners=False)
|
434 |
+
|
435 |
+
if self.kernel_size == 3:
|
436 |
+
x = F.pad(x, [3, 3, 3, 3])
|
437 |
+
y = F.pad(y, [3, 3, 3, 3])
|
438 |
+
|
439 |
+
x = self.conv1(paddle.concat([x, y], axis=1))
|
440 |
+
x = self.conv2(x)
|
441 |
+
|
442 |
+
if self.kernel_size == 3:
|
443 |
+
x = F.interpolate(x, paddle.concat((h_full + 4, w_full + 4)))
|
444 |
+
y = F.pad(src, [2, 2, 2, 2])
|
445 |
+
else:
|
446 |
+
x = F.interpolate(
|
447 |
+
x, paddle.concat((h_full, w_full)), mode='nearest')
|
448 |
+
y = src
|
449 |
+
|
450 |
+
x = self.conv3(paddle.concat([x, y], axis=1))
|
451 |
+
x = self.conv4(x)
|
452 |
+
|
453 |
+
pha = x
|
454 |
+
return pha
|
ppmatting/models/layers/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .gca_module import GuidedCxtAtten
|
ppmatting/models/layers/gca_module.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# The gca code was heavily based on https://github.com/Yaoyi-Li/GCA-Matting
|
16 |
+
# and https://github.com/open-mmlab/mmediting
|
17 |
+
|
18 |
+
import paddle
|
19 |
+
import paddle.nn as nn
|
20 |
+
import paddle.nn.functional as F
|
21 |
+
|
22 |
+
from paddleseg.cvlibs import param_init
|
23 |
+
|
24 |
+
|
25 |
+
class GuidedCxtAtten(nn.Layer):
|
26 |
+
def __init__(self,
|
27 |
+
out_channels,
|
28 |
+
guidance_channels,
|
29 |
+
kernel_size=3,
|
30 |
+
stride=1,
|
31 |
+
rate=2):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
self.kernel_size = kernel_size
|
35 |
+
self.rate = rate
|
36 |
+
self.stride = stride
|
37 |
+
self.guidance_conv = nn.Conv2D(
|
38 |
+
in_channels=guidance_channels,
|
39 |
+
out_channels=guidance_channels // 2,
|
40 |
+
kernel_size=1)
|
41 |
+
|
42 |
+
self.out_conv = nn.Sequential(
|
43 |
+
nn.Conv2D(
|
44 |
+
in_channels=out_channels,
|
45 |
+
out_channels=out_channels,
|
46 |
+
kernel_size=1,
|
47 |
+
bias_attr=False),
|
48 |
+
nn.BatchNorm(out_channels))
|
49 |
+
|
50 |
+
self.init_weight()
|
51 |
+
|
52 |
+
def init_weight(self):
|
53 |
+
param_init.xavier_uniform(self.guidance_conv.weight)
|
54 |
+
param_init.constant_init(self.guidance_conv.bias, value=0.0)
|
55 |
+
param_init.xavier_uniform(self.out_conv[0].weight)
|
56 |
+
param_init.constant_init(self.out_conv[1].weight, value=1e-3)
|
57 |
+
param_init.constant_init(self.out_conv[1].bias, value=0.0)
|
58 |
+
|
59 |
+
def forward(self, img_feat, alpha_feat, unknown=None, softmax_scale=1.):
|
60 |
+
|
61 |
+
img_feat = self.guidance_conv(img_feat)
|
62 |
+
img_feat = F.interpolate(
|
63 |
+
img_feat, scale_factor=1 / self.rate, mode='nearest')
|
64 |
+
|
65 |
+
# process unknown mask
|
66 |
+
unknown, softmax_scale = self.process_unknown_mask(unknown, img_feat,
|
67 |
+
softmax_scale)
|
68 |
+
|
69 |
+
img_ps, alpha_ps, unknown_ps = self.extract_feature_maps_patches(
|
70 |
+
img_feat, alpha_feat, unknown)
|
71 |
+
|
72 |
+
self_mask = self.get_self_correlation_mask(img_feat)
|
73 |
+
|
74 |
+
# split tensors by batch dimension; tuple is returned
|
75 |
+
img_groups = paddle.split(img_feat, 1, axis=0)
|
76 |
+
img_ps_groups = paddle.split(img_ps, 1, axis=0)
|
77 |
+
alpha_ps_groups = paddle.split(alpha_ps, 1, axis=0)
|
78 |
+
unknown_ps_groups = paddle.split(unknown_ps, 1, axis=0)
|
79 |
+
scale_groups = paddle.split(softmax_scale, 1, axis=0)
|
80 |
+
groups = (img_groups, img_ps_groups, alpha_ps_groups, unknown_ps_groups,
|
81 |
+
scale_groups)
|
82 |
+
|
83 |
+
y = []
|
84 |
+
|
85 |
+
for img_i, img_ps_i, alpha_ps_i, unknown_ps_i, scale_i in zip(*groups):
|
86 |
+
# conv for compare
|
87 |
+
similarity_map = self.compute_similarity_map(img_i, img_ps_i)
|
88 |
+
|
89 |
+
gca_score = self.compute_guided_attention_score(
|
90 |
+
similarity_map, unknown_ps_i, scale_i, self_mask)
|
91 |
+
|
92 |
+
yi = self.propagate_alpha_feature(gca_score, alpha_ps_i)
|
93 |
+
|
94 |
+
y.append(yi)
|
95 |
+
|
96 |
+
y = paddle.concat(y, axis=0) # back to the mini-batch
|
97 |
+
y = paddle.reshape(y, alpha_feat.shape)
|
98 |
+
|
99 |
+
y = self.out_conv(y) + alpha_feat
|
100 |
+
|
101 |
+
return y
|
102 |
+
|
103 |
+
def extract_feature_maps_patches(self, img_feat, alpha_feat, unknown):
|
104 |
+
|
105 |
+
# extract image feature patches with shape:
|
106 |
+
# (N, img_h*img_w, img_c, img_ks, img_ks)
|
107 |
+
img_ks = self.kernel_size
|
108 |
+
img_ps = self.extract_patches(img_feat, img_ks, self.stride)
|
109 |
+
|
110 |
+
# extract alpha feature patches with shape:
|
111 |
+
# (N, img_h*img_w, alpha_c, alpha_ks, alpha_ks)
|
112 |
+
alpha_ps = self.extract_patches(alpha_feat, self.rate * 2, self.rate)
|
113 |
+
|
114 |
+
# extract unknown mask patches with shape: (N, img_h*img_w, 1, 1)
|
115 |
+
unknown_ps = self.extract_patches(unknown, img_ks, self.stride)
|
116 |
+
unknown_ps = unknown_ps.squeeze(axis=2) # squeeze channel dimension
|
117 |
+
unknown_ps = unknown_ps.mean(axis=[2, 3], keepdim=True)
|
118 |
+
|
119 |
+
return img_ps, alpha_ps, unknown_ps
|
120 |
+
|
121 |
+
def extract_patches(self, x, kernel_size, stride):
|
122 |
+
n, c, _, _ = x.shape
|
123 |
+
x = self.pad(x, kernel_size, stride)
|
124 |
+
x = F.unfold(x, [kernel_size, kernel_size], strides=[stride, stride])
|
125 |
+
x = paddle.transpose(x, (0, 2, 1))
|
126 |
+
x = paddle.reshape(x, (n, -1, c, kernel_size, kernel_size))
|
127 |
+
|
128 |
+
return x
|
129 |
+
|
130 |
+
def pad(self, x, kernel_size, stride):
|
131 |
+
left = (kernel_size - stride + 1) // 2
|
132 |
+
right = (kernel_size - stride) // 2
|
133 |
+
pad = (left, right, left, right)
|
134 |
+
return F.pad(x, pad, mode='reflect')
|
135 |
+
|
136 |
+
def compute_guided_attention_score(self, similarity_map, unknown_ps, scale,
|
137 |
+
self_mask):
|
138 |
+
# scale the correlation with predicted scale factor for known and
|
139 |
+
# unknown area
|
140 |
+
unknown_scale, known_scale = scale[0]
|
141 |
+
out = similarity_map * (
|
142 |
+
unknown_scale * paddle.greater_than(unknown_ps,
|
143 |
+
paddle.to_tensor([0.])) +
|
144 |
+
known_scale * paddle.less_equal(unknown_ps, paddle.to_tensor([0.])))
|
145 |
+
# mask itself, self-mask only applied to unknown area
|
146 |
+
out = out + self_mask * unknown_ps
|
147 |
+
gca_score = F.softmax(out, axis=1)
|
148 |
+
|
149 |
+
return gca_score
|
150 |
+
|
151 |
+
def propagate_alpha_feature(self, gca_score, alpha_ps):
|
152 |
+
|
153 |
+
alpha_ps = alpha_ps[0] # squeeze dim 0
|
154 |
+
if self.rate == 1:
|
155 |
+
gca_score = self.pad(gca_score, kernel_size=2, stride=1)
|
156 |
+
alpha_ps = paddle.transpose(alpha_ps, (1, 0, 2, 3))
|
157 |
+
out = F.conv2d(gca_score, alpha_ps) / 4.
|
158 |
+
else:
|
159 |
+
out = F.conv2d_transpose(
|
160 |
+
gca_score, alpha_ps, stride=self.rate, padding=1) / 4.
|
161 |
+
|
162 |
+
return out
|
163 |
+
|
164 |
+
def compute_similarity_map(self, img_feat, img_ps):
|
165 |
+
img_ps = img_ps[0] # squeeze dim 0
|
166 |
+
# convolve the feature to get correlation (similarity) map
|
167 |
+
img_ps_normed = img_ps / paddle.clip(self.l2_norm(img_ps), 1e-4)
|
168 |
+
img_feat = F.pad(img_feat, (1, 1, 1, 1), mode='reflect')
|
169 |
+
similarity_map = F.conv2d(img_feat, img_ps_normed)
|
170 |
+
|
171 |
+
return similarity_map
|
172 |
+
|
173 |
+
def get_self_correlation_mask(self, img_feat):
|
174 |
+
_, _, h, w = img_feat.shape
|
175 |
+
self_mask = F.one_hot(
|
176 |
+
paddle.reshape(paddle.arange(h * w), (h, w)),
|
177 |
+
num_classes=int(h * w))
|
178 |
+
|
179 |
+
self_mask = paddle.transpose(self_mask, (2, 0, 1))
|
180 |
+
self_mask = paddle.reshape(self_mask, (1, h * w, h, w))
|
181 |
+
|
182 |
+
return self_mask * (-1e4)
|
183 |
+
|
184 |
+
def process_unknown_mask(self, unknown, img_feat, softmax_scale):
|
185 |
+
|
186 |
+
n, _, h, w = img_feat.shape
|
187 |
+
|
188 |
+
if unknown is not None:
|
189 |
+
unknown = unknown.clone()
|
190 |
+
unknown = F.interpolate(
|
191 |
+
unknown, scale_factor=1 / self.rate, mode='nearest')
|
192 |
+
unknown_mean = unknown.mean(axis=[2, 3])
|
193 |
+
known_mean = 1 - unknown_mean
|
194 |
+
unknown_scale = paddle.clip(
|
195 |
+
paddle.sqrt(unknown_mean / known_mean), 0.1, 10)
|
196 |
+
known_scale = paddle.clip(
|
197 |
+
paddle.sqrt(known_mean / unknown_mean), 0.1, 10)
|
198 |
+
softmax_scale = paddle.concat([unknown_scale, known_scale], axis=1)
|
199 |
+
else:
|
200 |
+
unknown = paddle.ones([n, 1, h, w])
|
201 |
+
softmax_scale = paddle.reshape(
|
202 |
+
paddle.to_tensor([softmax_scale, softmax_scale]), (1, 2))
|
203 |
+
softmax_scale = paddle.expand(softmax_scale, (n, 2))
|
204 |
+
|
205 |
+
return unknown, softmax_scale
|
206 |
+
|
207 |
+
@staticmethod
|
208 |
+
def l2_norm(x):
|
209 |
+
x = x**2
|
210 |
+
x = x.sum(axis=[1, 2, 3], keepdim=True)
|
211 |
+
return paddle.sqrt(x)
|
ppmatting/models/losses/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .loss import *
|
ppmatting/models/losses/loss.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import paddle
|
16 |
+
import paddle.nn as nn
|
17 |
+
import paddle.nn.functional as F
|
18 |
+
|
19 |
+
from paddleseg.cvlibs import manager
|
20 |
+
import cv2
|
21 |
+
|
22 |
+
|
23 |
+
@manager.LOSSES.add_component
|
24 |
+
class MRSD(nn.Layer):
|
25 |
+
def __init__(self, eps=1e-6):
|
26 |
+
super().__init__()
|
27 |
+
self.eps = eps
|
28 |
+
|
29 |
+
def forward(self, logit, label, mask=None):
|
30 |
+
"""
|
31 |
+
Forward computation.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
logit (Tensor): Logit tensor, the data type is float32, float64.
|
35 |
+
label (Tensor): Label tensor, the data type is float32, float64. The shape should equal to logit.
|
36 |
+
mask (Tensor, optional): The mask where the loss valid. Default: None.
|
37 |
+
"""
|
38 |
+
if len(label.shape) == 3:
|
39 |
+
label = label.unsqueeze(1)
|
40 |
+
sd = paddle.square(logit - label)
|
41 |
+
loss = paddle.sqrt(sd + self.eps)
|
42 |
+
if mask is not None:
|
43 |
+
mask = mask.astype('float32')
|
44 |
+
if len(mask.shape) == 3:
|
45 |
+
mask = mask.unsqueeze(1)
|
46 |
+
loss = loss * mask
|
47 |
+
loss = loss.sum() / (mask.sum() + self.eps)
|
48 |
+
mask.stop_gradient = True
|
49 |
+
else:
|
50 |
+
loss = loss.mean()
|
51 |
+
|
52 |
+
return loss
|
53 |
+
|
54 |
+
|
55 |
+
@manager.LOSSES.add_component
|
56 |
+
class GradientLoss(nn.Layer):
|
57 |
+
def __init__(self, eps=1e-6):
|
58 |
+
super().__init__()
|
59 |
+
self.kernel_x, self.kernel_y = self.sobel_kernel()
|
60 |
+
self.eps = eps
|
61 |
+
|
62 |
+
def forward(self, logit, label, mask=None):
|
63 |
+
if len(label.shape) == 3:
|
64 |
+
label = label.unsqueeze(1)
|
65 |
+
if mask is not None:
|
66 |
+
if len(mask.shape) == 3:
|
67 |
+
mask = mask.unsqueeze(1)
|
68 |
+
logit = logit * mask
|
69 |
+
label = label * mask
|
70 |
+
loss = paddle.sum(
|
71 |
+
F.l1_loss(self.sobel(logit), self.sobel(label), 'none')) / (
|
72 |
+
mask.sum() + self.eps)
|
73 |
+
else:
|
74 |
+
loss = F.l1_loss(self.sobel(logit), self.sobel(label), 'mean')
|
75 |
+
|
76 |
+
return loss
|
77 |
+
|
78 |
+
def sobel(self, input):
|
79 |
+
"""Using Sobel to compute gradient. Return the magnitude."""
|
80 |
+
if not len(input.shape) == 4:
|
81 |
+
raise ValueError("Invalid input shape, we expect NCHW, but it is ",
|
82 |
+
input.shape)
|
83 |
+
|
84 |
+
n, c, h, w = input.shape
|
85 |
+
|
86 |
+
input_pad = paddle.reshape(input, (n * c, 1, h, w))
|
87 |
+
input_pad = F.pad(input_pad, pad=[1, 1, 1, 1], mode='replicate')
|
88 |
+
|
89 |
+
grad_x = F.conv2d(input_pad, self.kernel_x, padding=0)
|
90 |
+
grad_y = F.conv2d(input_pad, self.kernel_y, padding=0)
|
91 |
+
|
92 |
+
mag = paddle.sqrt(grad_x * grad_x + grad_y * grad_y + self.eps)
|
93 |
+
mag = paddle.reshape(mag, (n, c, h, w))
|
94 |
+
|
95 |
+
return mag
|
96 |
+
|
97 |
+
def sobel_kernel(self):
|
98 |
+
kernel_x = paddle.to_tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0],
|
99 |
+
[-1.0, 0.0, 1.0]]).astype('float32')
|
100 |
+
kernel_x = kernel_x / kernel_x.abs().sum()
|
101 |
+
kernel_y = kernel_x.transpose([1, 0])
|
102 |
+
kernel_x = kernel_x.unsqueeze(0).unsqueeze(0)
|
103 |
+
kernel_y = kernel_y.unsqueeze(0).unsqueeze(0)
|
104 |
+
kernel_x.stop_gradient = True
|
105 |
+
kernel_y.stop_gradient = True
|
106 |
+
return kernel_x, kernel_y
|
107 |
+
|
108 |
+
|
109 |
+
@manager.LOSSES.add_component
|
110 |
+
class LaplacianLoss(nn.Layer):
|
111 |
+
"""
|
112 |
+
Laplacian loss is refer to
|
113 |
+
https://github.com/JizhiziLi/AIM/blob/master/core/evaluate.py#L83
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(self):
|
117 |
+
super().__init__()
|
118 |
+
self.gauss_kernel = self.build_gauss_kernel(
|
119 |
+
size=5, sigma=1.0, n_channels=1)
|
120 |
+
|
121 |
+
def forward(self, logit, label, mask=None):
|
122 |
+
if len(label.shape) == 3:
|
123 |
+
label = label.unsqueeze(1)
|
124 |
+
if mask is not None:
|
125 |
+
if len(mask.shape) == 3:
|
126 |
+
mask = mask.unsqueeze(1)
|
127 |
+
logit = logit * mask
|
128 |
+
label = label * mask
|
129 |
+
pyr_label = self.laplacian_pyramid(label, self.gauss_kernel, 5)
|
130 |
+
pyr_logit = self.laplacian_pyramid(logit, self.gauss_kernel, 5)
|
131 |
+
loss = sum(F.l1_loss(a, b) for a, b in zip(pyr_label, pyr_logit))
|
132 |
+
|
133 |
+
return loss
|
134 |
+
|
135 |
+
def build_gauss_kernel(self, size=5, sigma=1.0, n_channels=1):
|
136 |
+
if size % 2 != 1:
|
137 |
+
raise ValueError("kernel size must be uneven")
|
138 |
+
grid = np.float32(np.mgrid[0:size, 0:size].T)
|
139 |
+
gaussian = lambda x: np.exp((x - size // 2)**2 / (-2 * sigma**2))**2
|
140 |
+
kernel = np.sum(gaussian(grid), axis=2)
|
141 |
+
kernel /= np.sum(kernel)
|
142 |
+
kernel = np.tile(kernel, (n_channels, 1, 1))
|
143 |
+
kernel = paddle.to_tensor(kernel[:, None, :, :])
|
144 |
+
kernel.stop_gradient = True
|
145 |
+
return kernel
|
146 |
+
|
147 |
+
def conv_gauss(self, input, kernel):
|
148 |
+
n_channels, _, kh, kw = kernel.shape
|
149 |
+
x = F.pad(input, (kh // 2, kw // 2, kh // 2, kh // 2), mode='replicate')
|
150 |
+
x = F.conv2d(x, kernel, groups=n_channels)
|
151 |
+
|
152 |
+
return x
|
153 |
+
|
154 |
+
def laplacian_pyramid(self, input, kernel, max_levels=5):
|
155 |
+
current = input
|
156 |
+
pyr = []
|
157 |
+
for level in range(max_levels):
|
158 |
+
filtered = self.conv_gauss(current, kernel)
|
159 |
+
diff = current - filtered
|
160 |
+
pyr.append(diff)
|
161 |
+
current = F.avg_pool2d(filtered, 2)
|
162 |
+
pyr.append(current)
|
163 |
+
return pyr
|
ppmatting/models/modnet.py
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# you may not use this file except in compliance with the License.
|
2 |
+
# You may obtain a copy of the License at
|
3 |
+
#
|
4 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
5 |
+
#
|
6 |
+
# Unless required by applicable law or agreed to in writing, software
|
7 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
8 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
9 |
+
# See the License for the specific language governing permissions and
|
10 |
+
# limitations under the License.
|
11 |
+
|
12 |
+
from collections import defaultdict
|
13 |
+
|
14 |
+
import paddle
|
15 |
+
import paddle.nn as nn
|
16 |
+
import paddle.nn.functional as F
|
17 |
+
import numpy as np
|
18 |
+
import scipy
|
19 |
+
import paddleseg
|
20 |
+
from paddleseg.models import layers, losses
|
21 |
+
from paddleseg import utils
|
22 |
+
from paddleseg.cvlibs import manager, param_init
|
23 |
+
|
24 |
+
|
25 |
+
@manager.MODELS.add_component
|
26 |
+
class MODNet(nn.Layer):
|
27 |
+
"""
|
28 |
+
The MODNet implementation based on PaddlePaddle.
|
29 |
+
|
30 |
+
The original article refers to
|
31 |
+
Zhanghan Ke, et, al. "Is a Green Screen Really Necessary for Real-Time Portrait Matting?"
|
32 |
+
(https://arxiv.org/pdf/2011.11961.pdf).
|
33 |
+
|
34 |
+
Args:
|
35 |
+
backbone: backbone model.
|
36 |
+
hr(int, optional): The channels of high resolutions branch. Defautl: None.
|
37 |
+
pretrained(str, optional): The path of pretrianed model. Defautl: None.
|
38 |
+
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, backbone, hr_channels=32, pretrained=None):
|
42 |
+
super().__init__()
|
43 |
+
self.backbone = backbone
|
44 |
+
self.pretrained = pretrained
|
45 |
+
self.head = MODNetHead(
|
46 |
+
hr_channels=hr_channels, backbone_channels=backbone.feat_channels)
|
47 |
+
self.init_weight()
|
48 |
+
self.blurer = GaussianBlurLayer(1, 3)
|
49 |
+
self.loss_func_dict = None
|
50 |
+
|
51 |
+
def forward(self, inputs):
|
52 |
+
"""
|
53 |
+
If training, return a dict.
|
54 |
+
If evaluation, return the final alpha prediction.
|
55 |
+
"""
|
56 |
+
x = inputs['img']
|
57 |
+
feat_list = self.backbone(x)
|
58 |
+
y = self.head(inputs=inputs, feat_list=feat_list)
|
59 |
+
if self.training:
|
60 |
+
loss = self.loss(y, inputs)
|
61 |
+
return y, loss
|
62 |
+
else:
|
63 |
+
return y
|
64 |
+
|
65 |
+
def loss(self, logit_dict, label_dict, loss_func_dict=None):
|
66 |
+
if loss_func_dict is None:
|
67 |
+
if self.loss_func_dict is None:
|
68 |
+
self.loss_func_dict = defaultdict(list)
|
69 |
+
self.loss_func_dict['semantic'].append(paddleseg.models.MSELoss(
|
70 |
+
))
|
71 |
+
self.loss_func_dict['detail'].append(paddleseg.models.L1Loss())
|
72 |
+
self.loss_func_dict['fusion'].append(paddleseg.models.L1Loss())
|
73 |
+
self.loss_func_dict['fusion'].append(paddleseg.models.L1Loss())
|
74 |
+
else:
|
75 |
+
self.loss_func_dict = loss_func_dict
|
76 |
+
|
77 |
+
loss = {}
|
78 |
+
# semantic loss
|
79 |
+
semantic_gt = F.interpolate(
|
80 |
+
label_dict['alpha'],
|
81 |
+
scale_factor=1 / 16,
|
82 |
+
mode='bilinear',
|
83 |
+
align_corners=False)
|
84 |
+
semantic_gt = self.blurer(semantic_gt)
|
85 |
+
# semantic_gt.stop_gradient=True
|
86 |
+
loss['semantic'] = self.loss_func_dict['semantic'][0](
|
87 |
+
logit_dict['semantic'], semantic_gt)
|
88 |
+
|
89 |
+
# detail loss
|
90 |
+
trimap = label_dict['trimap']
|
91 |
+
mask = (trimap == 128).astype('float32')
|
92 |
+
logit_detail = logit_dict['detail'] * mask
|
93 |
+
label_detail = label_dict['alpha'] * mask
|
94 |
+
loss_detail = self.loss_func_dict['detail'][0](logit_detail,
|
95 |
+
label_detail)
|
96 |
+
loss_detail = loss_detail / (mask.mean() + 1e-6)
|
97 |
+
loss['detail'] = 10 * loss_detail
|
98 |
+
|
99 |
+
# fusion loss
|
100 |
+
matte = logit_dict['matte']
|
101 |
+
alpha = label_dict['alpha']
|
102 |
+
transition_mask = label_dict['trimap'] == 128
|
103 |
+
matte_boundary = paddle.where(transition_mask, matte, alpha)
|
104 |
+
# l1 loss
|
105 |
+
loss_fusion_l1 = self.loss_func_dict['fusion'][0](
|
106 |
+
matte, alpha) + 4 * self.loss_func_dict['fusion'][0](matte_boundary,
|
107 |
+
alpha)
|
108 |
+
# composition loss
|
109 |
+
loss_fusion_comp = self.loss_func_dict['fusion'][1](
|
110 |
+
matte * label_dict['img'], alpha *
|
111 |
+
label_dict['img']) + 4 * self.loss_func_dict['fusion'][1](
|
112 |
+
matte_boundary * label_dict['img'], alpha * label_dict['img'])
|
113 |
+
# consisten loss with semantic
|
114 |
+
transition_mask = F.interpolate(
|
115 |
+
label_dict['trimap'],
|
116 |
+
scale_factor=1 / 16,
|
117 |
+
mode='nearest',
|
118 |
+
align_corners=False)
|
119 |
+
transition_mask = transition_mask == 128
|
120 |
+
matte_con_sem = F.interpolate(
|
121 |
+
matte, scale_factor=1 / 16, mode='bilinear', align_corners=False)
|
122 |
+
matte_con_sem = self.blurer(matte_con_sem)
|
123 |
+
logit_semantic = logit_dict['semantic'].clone()
|
124 |
+
logit_semantic.stop_gradient = True
|
125 |
+
matte_con_sem = paddle.where(transition_mask, logit_semantic,
|
126 |
+
matte_con_sem)
|
127 |
+
if False:
|
128 |
+
import cv2
|
129 |
+
matte_con_sem_num = matte_con_sem.numpy()
|
130 |
+
matte_con_sem_num = matte_con_sem_num[0].squeeze()
|
131 |
+
matte_con_sem_num = (matte_con_sem_num * 255).astype('uint8')
|
132 |
+
semantic = logit_dict['semantic'].numpy()
|
133 |
+
semantic = semantic[0].squeeze()
|
134 |
+
semantic = (semantic * 255).astype('uint8')
|
135 |
+
transition_mask = transition_mask.astype('uint8')
|
136 |
+
transition_mask = transition_mask.numpy()
|
137 |
+
transition_mask = (transition_mask[0].squeeze()) * 255
|
138 |
+
cv2.imwrite('matte_con.png', matte_con_sem_num)
|
139 |
+
cv2.imwrite('semantic.png', semantic)
|
140 |
+
cv2.imwrite('transition.png', transition_mask)
|
141 |
+
mse_loss = paddleseg.models.MSELoss()
|
142 |
+
loss_fusion_con_sem = mse_loss(matte_con_sem, logit_dict['semantic'])
|
143 |
+
loss_fusion = loss_fusion_l1 + loss_fusion_comp + loss_fusion_con_sem
|
144 |
+
loss['fusion'] = loss_fusion
|
145 |
+
loss['fusion_l1'] = loss_fusion_l1
|
146 |
+
loss['fusion_comp'] = loss_fusion_comp
|
147 |
+
loss['fusion_con_sem'] = loss_fusion_con_sem
|
148 |
+
|
149 |
+
loss['all'] = loss['semantic'] + loss['detail'] + loss['fusion']
|
150 |
+
|
151 |
+
return loss
|
152 |
+
|
153 |
+
def init_weight(self):
|
154 |
+
if self.pretrained is not None:
|
155 |
+
utils.load_entire_model(self, self.pretrained)
|
156 |
+
|
157 |
+
|
158 |
+
class MODNetHead(nn.Layer):
|
159 |
+
def __init__(self, hr_channels, backbone_channels):
|
160 |
+
super().__init__()
|
161 |
+
|
162 |
+
self.lr_branch = LRBranch(backbone_channels)
|
163 |
+
self.hr_branch = HRBranch(hr_channels, backbone_channels)
|
164 |
+
self.f_branch = FusionBranch(hr_channels, backbone_channels)
|
165 |
+
self.init_weight()
|
166 |
+
|
167 |
+
def forward(self, inputs, feat_list):
|
168 |
+
pred_semantic, lr8x, [enc2x, enc4x] = self.lr_branch(feat_list)
|
169 |
+
pred_detail, hr2x = self.hr_branch(inputs['img'], enc2x, enc4x, lr8x)
|
170 |
+
pred_matte = self.f_branch(inputs['img'], lr8x, hr2x)
|
171 |
+
|
172 |
+
if self.training:
|
173 |
+
logit_dict = {
|
174 |
+
'semantic': pred_semantic,
|
175 |
+
'detail': pred_detail,
|
176 |
+
'matte': pred_matte
|
177 |
+
}
|
178 |
+
return logit_dict
|
179 |
+
else:
|
180 |
+
return pred_matte
|
181 |
+
|
182 |
+
def init_weight(self):
|
183 |
+
for layer in self.sublayers():
|
184 |
+
if isinstance(layer, nn.Conv2D):
|
185 |
+
param_init.kaiming_uniform(layer.weight)
|
186 |
+
|
187 |
+
|
188 |
+
class FusionBranch(nn.Layer):
|
189 |
+
def __init__(self, hr_channels, enc_channels):
|
190 |
+
super().__init__()
|
191 |
+
self.conv_lr4x = Conv2dIBNormRelu(
|
192 |
+
enc_channels[2], hr_channels, 5, stride=1, padding=2)
|
193 |
+
|
194 |
+
self.conv_f2x = Conv2dIBNormRelu(
|
195 |
+
2 * hr_channels, hr_channels, 3, stride=1, padding=1)
|
196 |
+
self.conv_f = nn.Sequential(
|
197 |
+
Conv2dIBNormRelu(
|
198 |
+
hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
|
199 |
+
Conv2dIBNormRelu(
|
200 |
+
int(hr_channels / 2),
|
201 |
+
1,
|
202 |
+
1,
|
203 |
+
stride=1,
|
204 |
+
padding=0,
|
205 |
+
with_ibn=False,
|
206 |
+
with_relu=False))
|
207 |
+
|
208 |
+
def forward(self, img, lr8x, hr2x):
|
209 |
+
lr4x = F.interpolate(
|
210 |
+
lr8x, scale_factor=2, mode='bilinear', align_corners=False)
|
211 |
+
lr4x = self.conv_lr4x(lr4x)
|
212 |
+
lr2x = F.interpolate(
|
213 |
+
lr4x, scale_factor=2, mode='bilinear', align_corners=False)
|
214 |
+
|
215 |
+
f2x = self.conv_f2x(paddle.concat((lr2x, hr2x), axis=1))
|
216 |
+
f = F.interpolate(
|
217 |
+
f2x, scale_factor=2, mode='bilinear', align_corners=False)
|
218 |
+
f = self.conv_f(paddle.concat((f, img), axis=1))
|
219 |
+
pred_matte = F.sigmoid(f)
|
220 |
+
|
221 |
+
return pred_matte
|
222 |
+
|
223 |
+
|
224 |
+
class HRBranch(nn.Layer):
|
225 |
+
"""
|
226 |
+
High Resolution Branch of MODNet
|
227 |
+
"""
|
228 |
+
|
229 |
+
def __init__(self, hr_channels, enc_channels):
|
230 |
+
super().__init__()
|
231 |
+
|
232 |
+
self.tohr_enc2x = Conv2dIBNormRelu(
|
233 |
+
enc_channels[0], hr_channels, 1, stride=1, padding=0)
|
234 |
+
self.conv_enc2x = Conv2dIBNormRelu(
|
235 |
+
hr_channels + 3, hr_channels, 3, stride=2, padding=1)
|
236 |
+
|
237 |
+
self.tohr_enc4x = Conv2dIBNormRelu(
|
238 |
+
enc_channels[1], hr_channels, 1, stride=1, padding=0)
|
239 |
+
self.conv_enc4x = Conv2dIBNormRelu(
|
240 |
+
2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1)
|
241 |
+
|
242 |
+
self.conv_hr4x = nn.Sequential(
|
243 |
+
Conv2dIBNormRelu(
|
244 |
+
2 * hr_channels + enc_channels[2] + 3,
|
245 |
+
2 * hr_channels,
|
246 |
+
3,
|
247 |
+
stride=1,
|
248 |
+
padding=1),
|
249 |
+
Conv2dIBNormRelu(
|
250 |
+
2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
|
251 |
+
Conv2dIBNormRelu(
|
252 |
+
2 * hr_channels, hr_channels, 3, stride=1, padding=1))
|
253 |
+
|
254 |
+
self.conv_hr2x = nn.Sequential(
|
255 |
+
Conv2dIBNormRelu(
|
256 |
+
2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
|
257 |
+
Conv2dIBNormRelu(
|
258 |
+
2 * hr_channels, hr_channels, 3, stride=1, padding=1),
|
259 |
+
Conv2dIBNormRelu(
|
260 |
+
hr_channels, hr_channels, 3, stride=1, padding=1),
|
261 |
+
Conv2dIBNormRelu(
|
262 |
+
hr_channels, hr_channels, 3, stride=1, padding=1))
|
263 |
+
|
264 |
+
self.conv_hr = nn.Sequential(
|
265 |
+
Conv2dIBNormRelu(
|
266 |
+
hr_channels + 3, hr_channels, 3, stride=1, padding=1),
|
267 |
+
Conv2dIBNormRelu(
|
268 |
+
hr_channels,
|
269 |
+
1,
|
270 |
+
1,
|
271 |
+
stride=1,
|
272 |
+
padding=0,
|
273 |
+
with_ibn=False,
|
274 |
+
with_relu=False))
|
275 |
+
|
276 |
+
def forward(self, img, enc2x, enc4x, lr8x):
|
277 |
+
img2x = F.interpolate(
|
278 |
+
img, scale_factor=1 / 2, mode='bilinear', align_corners=False)
|
279 |
+
img4x = F.interpolate(
|
280 |
+
img, scale_factor=1 / 4, mode='bilinear', align_corners=False)
|
281 |
+
|
282 |
+
enc2x = self.tohr_enc2x(enc2x)
|
283 |
+
hr4x = self.conv_enc2x(paddle.concat((img2x, enc2x), axis=1))
|
284 |
+
|
285 |
+
enc4x = self.tohr_enc4x(enc4x)
|
286 |
+
hr4x = self.conv_enc4x(paddle.concat((hr4x, enc4x), axis=1))
|
287 |
+
|
288 |
+
lr4x = F.interpolate(
|
289 |
+
lr8x, scale_factor=2, mode='bilinear', align_corners=False)
|
290 |
+
hr4x = self.conv_hr4x(paddle.concat((hr4x, lr4x, img4x), axis=1))
|
291 |
+
|
292 |
+
hr2x = F.interpolate(
|
293 |
+
hr4x, scale_factor=2, mode='bilinear', align_corners=False)
|
294 |
+
hr2x = self.conv_hr2x(paddle.concat((hr2x, enc2x), axis=1))
|
295 |
+
|
296 |
+
pred_detail = None
|
297 |
+
if self.training:
|
298 |
+
hr = F.interpolate(
|
299 |
+
hr2x, scale_factor=2, mode='bilinear', align_corners=False)
|
300 |
+
hr = self.conv_hr(paddle.concat((hr, img), axis=1))
|
301 |
+
pred_detail = F.sigmoid(hr)
|
302 |
+
|
303 |
+
return pred_detail, hr2x
|
304 |
+
|
305 |
+
|
306 |
+
class LRBranch(nn.Layer):
|
307 |
+
def __init__(self, backbone_channels):
|
308 |
+
super().__init__()
|
309 |
+
self.se_block = SEBlock(backbone_channels[4], reduction=4)
|
310 |
+
self.conv_lr16x = Conv2dIBNormRelu(
|
311 |
+
backbone_channels[4], backbone_channels[3], 5, stride=1, padding=2)
|
312 |
+
self.conv_lr8x = Conv2dIBNormRelu(
|
313 |
+
backbone_channels[3], backbone_channels[2], 5, stride=1, padding=2)
|
314 |
+
self.conv_lr = Conv2dIBNormRelu(
|
315 |
+
backbone_channels[2],
|
316 |
+
1,
|
317 |
+
3,
|
318 |
+
stride=2,
|
319 |
+
padding=1,
|
320 |
+
with_ibn=False,
|
321 |
+
with_relu=False)
|
322 |
+
|
323 |
+
def forward(self, feat_list):
|
324 |
+
enc2x, enc4x, enc32x = feat_list[0], feat_list[1], feat_list[4]
|
325 |
+
|
326 |
+
enc32x = self.se_block(enc32x)
|
327 |
+
lr16x = F.interpolate(
|
328 |
+
enc32x, scale_factor=2, mode='bilinear', align_corners=False)
|
329 |
+
lr16x = self.conv_lr16x(lr16x)
|
330 |
+
lr8x = F.interpolate(
|
331 |
+
lr16x, scale_factor=2, mode='bilinear', align_corners=False)
|
332 |
+
lr8x = self.conv_lr8x(lr8x)
|
333 |
+
|
334 |
+
pred_semantic = None
|
335 |
+
if self.training:
|
336 |
+
lr = self.conv_lr(lr8x)
|
337 |
+
pred_semantic = F.sigmoid(lr)
|
338 |
+
|
339 |
+
return pred_semantic, lr8x, [enc2x, enc4x]
|
340 |
+
|
341 |
+
|
342 |
+
class IBNorm(nn.Layer):
|
343 |
+
"""
|
344 |
+
Combine Instance Norm and Batch Norm into One Layer
|
345 |
+
"""
|
346 |
+
|
347 |
+
def __init__(self, in_channels):
|
348 |
+
super().__init__()
|
349 |
+
self.bnorm_channels = in_channels // 2
|
350 |
+
self.inorm_channels = in_channels - self.bnorm_channels
|
351 |
+
|
352 |
+
self.bnorm = nn.BatchNorm2D(self.bnorm_channels)
|
353 |
+
self.inorm = nn.InstanceNorm2D(self.inorm_channels)
|
354 |
+
|
355 |
+
def forward(self, x):
|
356 |
+
bn_x = self.bnorm(x[:, :self.bnorm_channels, :, :])
|
357 |
+
in_x = self.inorm(x[:, self.bnorm_channels:, :, :])
|
358 |
+
|
359 |
+
return paddle.concat((bn_x, in_x), 1)
|
360 |
+
|
361 |
+
|
362 |
+
class Conv2dIBNormRelu(nn.Layer):
|
363 |
+
"""
|
364 |
+
Convolution + IBNorm + Relu
|
365 |
+
"""
|
366 |
+
|
367 |
+
def __init__(self,
|
368 |
+
in_channels,
|
369 |
+
out_channels,
|
370 |
+
kernel_size,
|
371 |
+
stride=1,
|
372 |
+
padding=0,
|
373 |
+
dilation=1,
|
374 |
+
groups=1,
|
375 |
+
bias_attr=None,
|
376 |
+
with_ibn=True,
|
377 |
+
with_relu=True):
|
378 |
+
|
379 |
+
super().__init__()
|
380 |
+
|
381 |
+
layers = [
|
382 |
+
nn.Conv2D(
|
383 |
+
in_channels,
|
384 |
+
out_channels,
|
385 |
+
kernel_size,
|
386 |
+
stride=stride,
|
387 |
+
padding=padding,
|
388 |
+
dilation=dilation,
|
389 |
+
groups=groups,
|
390 |
+
bias_attr=bias_attr)
|
391 |
+
]
|
392 |
+
|
393 |
+
if with_ibn:
|
394 |
+
layers.append(IBNorm(out_channels))
|
395 |
+
|
396 |
+
if with_relu:
|
397 |
+
layers.append(nn.ReLU())
|
398 |
+
|
399 |
+
self.layers = nn.Sequential(*layers)
|
400 |
+
|
401 |
+
def forward(self, x):
|
402 |
+
return self.layers(x)
|
403 |
+
|
404 |
+
|
405 |
+
class SEBlock(nn.Layer):
|
406 |
+
"""
|
407 |
+
SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
|
408 |
+
"""
|
409 |
+
|
410 |
+
def __init__(self, num_channels, reduction=1):
|
411 |
+
super().__init__()
|
412 |
+
self.pool = nn.AdaptiveAvgPool2D(1)
|
413 |
+
self.conv = nn.Sequential(
|
414 |
+
nn.Conv2D(
|
415 |
+
num_channels,
|
416 |
+
int(num_channels // reduction),
|
417 |
+
1,
|
418 |
+
bias_attr=False),
|
419 |
+
nn.ReLU(),
|
420 |
+
nn.Conv2D(
|
421 |
+
int(num_channels // reduction),
|
422 |
+
num_channels,
|
423 |
+
1,
|
424 |
+
bias_attr=False),
|
425 |
+
nn.Sigmoid())
|
426 |
+
|
427 |
+
def forward(self, x):
|
428 |
+
w = self.pool(x)
|
429 |
+
w = self.conv(w)
|
430 |
+
return w * x
|
431 |
+
|
432 |
+
|
433 |
+
class GaussianBlurLayer(nn.Layer):
|
434 |
+
""" Add Gaussian Blur to a 4D tensors
|
435 |
+
This layer takes a 4D tensor of {N, C, H, W} as input.
|
436 |
+
The Gaussian blur will be performed in given channel number (C) splitly.
|
437 |
+
"""
|
438 |
+
|
439 |
+
def __init__(self, channels, kernel_size):
|
440 |
+
"""
|
441 |
+
Args:
|
442 |
+
channels (int): Channel for input tensor
|
443 |
+
kernel_size (int): Size of the kernel used in blurring
|
444 |
+
"""
|
445 |
+
|
446 |
+
super(GaussianBlurLayer, self).__init__()
|
447 |
+
self.channels = channels
|
448 |
+
self.kernel_size = kernel_size
|
449 |
+
assert self.kernel_size % 2 != 0
|
450 |
+
|
451 |
+
self.op = nn.Sequential(
|
452 |
+
nn.Pad2D(
|
453 |
+
int(self.kernel_size / 2), mode='reflect'),
|
454 |
+
nn.Conv2D(
|
455 |
+
channels,
|
456 |
+
channels,
|
457 |
+
self.kernel_size,
|
458 |
+
stride=1,
|
459 |
+
padding=0,
|
460 |
+
bias_attr=False,
|
461 |
+
groups=channels))
|
462 |
+
|
463 |
+
self._init_kernel()
|
464 |
+
self.op[1].weight.stop_gradient = True
|
465 |
+
|
466 |
+
def forward(self, x):
|
467 |
+
"""
|
468 |
+
Args:
|
469 |
+
x (paddle.Tensor): input 4D tensor
|
470 |
+
Returns:
|
471 |
+
paddle.Tensor: Blurred version of the input
|
472 |
+
"""
|
473 |
+
|
474 |
+
if not len(list(x.shape)) == 4:
|
475 |
+
print('\'GaussianBlurLayer\' requires a 4D tensor as input\n')
|
476 |
+
exit()
|
477 |
+
elif not x.shape[1] == self.channels:
|
478 |
+
print('In \'GaussianBlurLayer\', the required channel ({0}) is'
|
479 |
+
'not the same as input ({1})\n'.format(self.channels, x.shape[
|
480 |
+
1]))
|
481 |
+
exit()
|
482 |
+
|
483 |
+
return self.op(x)
|
484 |
+
|
485 |
+
def _init_kernel(self):
|
486 |
+
sigma = 0.3 * ((self.kernel_size - 1) * 0.5 - 1) + 0.8
|
487 |
+
|
488 |
+
n = np.zeros((self.kernel_size, self.kernel_size))
|
489 |
+
i = int(self.kernel_size / 2)
|
490 |
+
n[i, i] = 1
|
491 |
+
kernel = scipy.ndimage.gaussian_filter(n, sigma)
|
492 |
+
kernel = kernel.astype('float32')
|
493 |
+
kernel = kernel[np.newaxis, np.newaxis, :, :]
|
494 |
+
paddle.assign(kernel, self.op[1].weight)
|
ppmatting/models/ppmatting.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from collections import defaultdict
|
16 |
+
import time
|
17 |
+
|
18 |
+
import paddle
|
19 |
+
import paddle.nn as nn
|
20 |
+
import paddle.nn.functional as F
|
21 |
+
import paddleseg
|
22 |
+
from paddleseg.models import layers
|
23 |
+
from paddleseg import utils
|
24 |
+
from paddleseg.cvlibs import manager
|
25 |
+
|
26 |
+
from ppmatting.models.losses import MRSD, GradientLoss
|
27 |
+
from ppmatting.models.backbone import resnet_vd
|
28 |
+
|
29 |
+
|
30 |
+
@manager.MODELS.add_component
|
31 |
+
class PPMatting(nn.Layer):
|
32 |
+
"""
|
33 |
+
The PPMattinh implementation based on PaddlePaddle.
|
34 |
+
|
35 |
+
The original article refers to
|
36 |
+
Guowei Chen, et, al. "PP-Matting: High-Accuracy Natural Image Matting"
|
37 |
+
(https://arxiv.org/pdf/2204.09433.pdf).
|
38 |
+
|
39 |
+
Args:
|
40 |
+
backbone: backbone model.
|
41 |
+
pretrained(str, optional): The path of pretrianed model. Defautl: None.
|
42 |
+
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self, backbone, pretrained=None):
|
46 |
+
super().__init__()
|
47 |
+
self.backbone = backbone
|
48 |
+
self.pretrained = pretrained
|
49 |
+
self.loss_func_dict = self.get_loss_func_dict()
|
50 |
+
|
51 |
+
self.backbone_channels = backbone.feat_channels
|
52 |
+
|
53 |
+
self.scb = SCB(self.backbone_channels[-1])
|
54 |
+
|
55 |
+
self.hrdb = HRDB(
|
56 |
+
self.backbone_channels[0] + self.backbone_channels[1],
|
57 |
+
scb_channels=self.scb.out_channels,
|
58 |
+
gf_index=[0, 2, 4])
|
59 |
+
|
60 |
+
self.init_weight()
|
61 |
+
|
62 |
+
def forward(self, inputs):
|
63 |
+
x = inputs['img']
|
64 |
+
input_shape = paddle.shape(x)
|
65 |
+
fea_list = self.backbone(x)
|
66 |
+
|
67 |
+
scb_logits = self.scb(fea_list[-1])
|
68 |
+
semantic_map = F.softmax(scb_logits[-1], axis=1)
|
69 |
+
|
70 |
+
fea0 = F.interpolate(
|
71 |
+
fea_list[0], input_shape[2:], mode='bilinear', align_corners=False)
|
72 |
+
fea1 = F.interpolate(
|
73 |
+
fea_list[1], input_shape[2:], mode='bilinear', align_corners=False)
|
74 |
+
hrdb_input = paddle.concat([fea0, fea1], 1)
|
75 |
+
hrdb_logit = self.hrdb(hrdb_input, scb_logits)
|
76 |
+
detail_map = F.sigmoid(hrdb_logit)
|
77 |
+
fusion = self.fusion(semantic_map, detail_map)
|
78 |
+
|
79 |
+
if self.training:
|
80 |
+
logit_dict = {
|
81 |
+
'semantic': semantic_map,
|
82 |
+
'detail': detail_map,
|
83 |
+
'fusion': fusion
|
84 |
+
}
|
85 |
+
loss_dict = self.loss(logit_dict, inputs)
|
86 |
+
return logit_dict, loss_dict
|
87 |
+
else:
|
88 |
+
return fusion
|
89 |
+
|
90 |
+
def get_loss_func_dict(self):
|
91 |
+
loss_func_dict = defaultdict(list)
|
92 |
+
loss_func_dict['semantic'].append(nn.NLLLoss())
|
93 |
+
loss_func_dict['detail'].append(MRSD())
|
94 |
+
loss_func_dict['detail'].append(GradientLoss())
|
95 |
+
loss_func_dict['fusion'].append(MRSD())
|
96 |
+
loss_func_dict['fusion'].append(MRSD())
|
97 |
+
loss_func_dict['fusion'].append(GradientLoss())
|
98 |
+
return loss_func_dict
|
99 |
+
|
100 |
+
def loss(self, logit_dict, label_dict):
|
101 |
+
loss = {}
|
102 |
+
|
103 |
+
# semantic loss computation
|
104 |
+
# get semantic label
|
105 |
+
semantic_label = label_dict['trimap']
|
106 |
+
semantic_label_trans = (semantic_label == 128).astype('int64')
|
107 |
+
semantic_label_bg = (semantic_label == 0).astype('int64')
|
108 |
+
semantic_label = semantic_label_trans + semantic_label_bg * 2
|
109 |
+
loss_semantic = self.loss_func_dict['semantic'][0](
|
110 |
+
paddle.log(logit_dict['semantic'] + 1e-6),
|
111 |
+
semantic_label.squeeze(1))
|
112 |
+
loss['semantic'] = loss_semantic
|
113 |
+
|
114 |
+
# detail loss computation
|
115 |
+
transparent = label_dict['trimap'] == 128
|
116 |
+
detail_alpha_loss = self.loss_func_dict['detail'][0](
|
117 |
+
logit_dict['detail'], label_dict['alpha'], transparent)
|
118 |
+
# gradient loss
|
119 |
+
detail_gradient_loss = self.loss_func_dict['detail'][1](
|
120 |
+
logit_dict['detail'], label_dict['alpha'], transparent)
|
121 |
+
loss_detail = detail_alpha_loss + detail_gradient_loss
|
122 |
+
loss['detail'] = loss_detail
|
123 |
+
loss['detail_alpha'] = detail_alpha_loss
|
124 |
+
loss['detail_gradient'] = detail_gradient_loss
|
125 |
+
|
126 |
+
# fusion loss
|
127 |
+
loss_fusion_func = self.loss_func_dict['fusion']
|
128 |
+
# fusion_sigmoid loss
|
129 |
+
fusion_alpha_loss = loss_fusion_func[0](logit_dict['fusion'],
|
130 |
+
label_dict['alpha'])
|
131 |
+
# composion loss
|
132 |
+
comp_pred = logit_dict['fusion'] * label_dict['fg'] + (
|
133 |
+
1 - logit_dict['fusion']) * label_dict['bg']
|
134 |
+
comp_gt = label_dict['alpha'] * label_dict['fg'] + (
|
135 |
+
1 - label_dict['alpha']) * label_dict['bg']
|
136 |
+
fusion_composition_loss = loss_fusion_func[1](comp_pred, comp_gt)
|
137 |
+
# grandient loss
|
138 |
+
fusion_grad_loss = loss_fusion_func[2](logit_dict['fusion'],
|
139 |
+
label_dict['alpha'])
|
140 |
+
# fusion loss
|
141 |
+
loss_fusion = fusion_alpha_loss + fusion_composition_loss + fusion_grad_loss
|
142 |
+
loss['fusion'] = loss_fusion
|
143 |
+
loss['fusion_alpha'] = fusion_alpha_loss
|
144 |
+
loss['fusion_composition'] = fusion_composition_loss
|
145 |
+
loss['fusion_gradient'] = fusion_grad_loss
|
146 |
+
|
147 |
+
loss[
|
148 |
+
'all'] = 0.25 * loss_semantic + 0.25 * loss_detail + 0.25 * loss_fusion
|
149 |
+
|
150 |
+
return loss
|
151 |
+
|
152 |
+
def fusion(self, semantic_map, detail_map):
|
153 |
+
# semantic_map [N, 3, H, W]
|
154 |
+
# In index, 0 is foreground, 1 is transition, 2 is backbone
|
155 |
+
# After fusion, the foreground is 1, the background is 0, and the transion is between [0, 1]
|
156 |
+
index = paddle.argmax(semantic_map, axis=1, keepdim=True)
|
157 |
+
transition_mask = (index == 1).astype('float32')
|
158 |
+
fg = (index == 0).astype('float32')
|
159 |
+
alpha = detail_map * transition_mask + fg
|
160 |
+
return alpha
|
161 |
+
|
162 |
+
def init_weight(self):
|
163 |
+
if self.pretrained is not None:
|
164 |
+
utils.load_entire_model(self, self.pretrained)
|
165 |
+
|
166 |
+
|
167 |
+
class SCB(nn.Layer):
|
168 |
+
def __init__(self, in_channels):
|
169 |
+
super().__init__()
|
170 |
+
self.in_channels = [512 + in_channels, 512, 256, 128, 128, 64]
|
171 |
+
self.mid_channels = [512, 256, 128, 128, 64, 64]
|
172 |
+
self.out_channels = [256, 128, 64, 64, 64, 3]
|
173 |
+
|
174 |
+
self.psp_module = layers.PPModule(
|
175 |
+
in_channels,
|
176 |
+
512,
|
177 |
+
bin_sizes=(1, 3, 5),
|
178 |
+
dim_reduction=False,
|
179 |
+
align_corners=False)
|
180 |
+
|
181 |
+
psp_upsamples = [2, 4, 8, 16]
|
182 |
+
self.psps = nn.LayerList([
|
183 |
+
self.conv_up_psp(512, self.out_channels[i], psp_upsamples[i])
|
184 |
+
for i in range(4)
|
185 |
+
])
|
186 |
+
|
187 |
+
scb_list = [
|
188 |
+
self._make_stage(
|
189 |
+
self.in_channels[i],
|
190 |
+
self.mid_channels[i],
|
191 |
+
self.out_channels[i],
|
192 |
+
padding=int(i == 0) + 1,
|
193 |
+
dilation=int(i == 0) + 1)
|
194 |
+
for i in range(len(self.in_channels) - 1)
|
195 |
+
]
|
196 |
+
scb_list += [
|
197 |
+
nn.Sequential(
|
198 |
+
layers.ConvBNReLU(
|
199 |
+
self.in_channels[-1], self.mid_channels[-1], 3, padding=1),
|
200 |
+
layers.ConvBNReLU(
|
201 |
+
self.mid_channels[-1], self.mid_channels[-1], 3, padding=1),
|
202 |
+
nn.Conv2D(
|
203 |
+
self.mid_channels[-1], self.out_channels[-1], 3, padding=1))
|
204 |
+
]
|
205 |
+
self.scb_stages = nn.LayerList(scb_list)
|
206 |
+
|
207 |
+
def forward(self, x):
|
208 |
+
psp_x = self.psp_module(x)
|
209 |
+
psps = [psp(psp_x) for psp in self.psps]
|
210 |
+
|
211 |
+
scb_logits = []
|
212 |
+
for i, scb_stage in enumerate(self.scb_stages):
|
213 |
+
if i == 0:
|
214 |
+
x = scb_stage(paddle.concat((psp_x, x), 1))
|
215 |
+
elif i <= len(psps):
|
216 |
+
x = scb_stage(paddle.concat((psps[i - 1], x), 1))
|
217 |
+
else:
|
218 |
+
x = scb_stage(x)
|
219 |
+
scb_logits.append(x)
|
220 |
+
return scb_logits
|
221 |
+
|
222 |
+
def conv_up_psp(self, in_channels, out_channels, up_sample):
|
223 |
+
return nn.Sequential(
|
224 |
+
layers.ConvBNReLU(
|
225 |
+
in_channels, out_channels, 3, padding=1),
|
226 |
+
nn.Upsample(
|
227 |
+
scale_factor=up_sample, mode='bilinear', align_corners=False))
|
228 |
+
|
229 |
+
def _make_stage(self,
|
230 |
+
in_channels,
|
231 |
+
mid_channels,
|
232 |
+
out_channels,
|
233 |
+
padding=1,
|
234 |
+
dilation=1):
|
235 |
+
layer_list = [
|
236 |
+
layers.ConvBNReLU(
|
237 |
+
in_channels, mid_channels, 3, padding=1), layers.ConvBNReLU(
|
238 |
+
mid_channels,
|
239 |
+
mid_channels,
|
240 |
+
3,
|
241 |
+
padding=padding,
|
242 |
+
dilation=dilation), layers.ConvBNReLU(
|
243 |
+
mid_channels,
|
244 |
+
out_channels,
|
245 |
+
3,
|
246 |
+
padding=padding,
|
247 |
+
dilation=dilation), nn.Upsample(
|
248 |
+
scale_factor=2,
|
249 |
+
mode='bilinear',
|
250 |
+
align_corners=False)
|
251 |
+
]
|
252 |
+
return nn.Sequential(*layer_list)
|
253 |
+
|
254 |
+
|
255 |
+
class HRDB(nn.Layer):
|
256 |
+
"""
|
257 |
+
The High-Resolution Detail Branch
|
258 |
+
|
259 |
+
Args:
|
260 |
+
in_channels(int): The number of input channels.
|
261 |
+
scb_channels(list|tuple): The channels of scb logits
|
262 |
+
gf_index(list|tuple, optional): Which logit is selected as guidance flow from scb logits. Default: (0, 2, 4)
|
263 |
+
"""
|
264 |
+
|
265 |
+
def __init__(self, in_channels, scb_channels, gf_index=(0, 2, 4)):
|
266 |
+
super().__init__()
|
267 |
+
self.gf_index = gf_index
|
268 |
+
self.gf_list = nn.LayerList(
|
269 |
+
[nn.Conv2D(scb_channels[i], 1, 1) for i in gf_index])
|
270 |
+
|
271 |
+
channels = [64, 32, 16, 8]
|
272 |
+
self.res_list = [
|
273 |
+
resnet_vd.BasicBlock(
|
274 |
+
in_channels, channels[0], stride=1, shortcut=False)
|
275 |
+
]
|
276 |
+
self.res_list += [
|
277 |
+
resnet_vd.BasicBlock(
|
278 |
+
i, i, stride=1) for i in channels[1:-1]
|
279 |
+
]
|
280 |
+
self.res_list = nn.LayerList(self.res_list)
|
281 |
+
|
282 |
+
self.convs = nn.LayerList([
|
283 |
+
nn.Conv2D(
|
284 |
+
channels[i], channels[i + 1], kernel_size=1)
|
285 |
+
for i in range(len(channels) - 1)
|
286 |
+
])
|
287 |
+
self.gates = nn.LayerList(
|
288 |
+
[GatedSpatailConv2d(i, i) for i in channels[1:]])
|
289 |
+
|
290 |
+
self.detail_conv = nn.Conv2D(channels[-1], 1, 1, bias_attr=False)
|
291 |
+
|
292 |
+
def forward(self, x, scb_logits):
|
293 |
+
for i in range(len(self.res_list)):
|
294 |
+
x = self.res_list[i](x)
|
295 |
+
x = self.convs[i](x)
|
296 |
+
gf = self.gf_list[i](scb_logits[self.gf_index[i]])
|
297 |
+
gf = F.interpolate(
|
298 |
+
gf, paddle.shape(x)[-2:], mode='bilinear', align_corners=False)
|
299 |
+
x = self.gates[i](x, gf)
|
300 |
+
return self.detail_conv(x)
|
301 |
+
|
302 |
+
|
303 |
+
class GatedSpatailConv2d(nn.Layer):
|
304 |
+
def __init__(self,
|
305 |
+
in_channels,
|
306 |
+
out_channels,
|
307 |
+
kernel_size=1,
|
308 |
+
stride=1,
|
309 |
+
padding=0,
|
310 |
+
dilation=1,
|
311 |
+
groups=1,
|
312 |
+
bias_attr=False):
|
313 |
+
super().__init__()
|
314 |
+
self._gate_conv = nn.Sequential(
|
315 |
+
layers.SyncBatchNorm(in_channels + 1),
|
316 |
+
nn.Conv2D(
|
317 |
+
in_channels + 1, in_channels + 1, kernel_size=1),
|
318 |
+
nn.ReLU(),
|
319 |
+
nn.Conv2D(
|
320 |
+
in_channels + 1, 1, kernel_size=1),
|
321 |
+
layers.SyncBatchNorm(1),
|
322 |
+
nn.Sigmoid())
|
323 |
+
self.conv = nn.Conv2D(
|
324 |
+
in_channels,
|
325 |
+
out_channels,
|
326 |
+
kernel_size=kernel_size,
|
327 |
+
stride=stride,
|
328 |
+
padding=padding,
|
329 |
+
dilation=dilation,
|
330 |
+
groups=groups,
|
331 |
+
bias_attr=bias_attr)
|
332 |
+
|
333 |
+
def forward(self, input_features, gating_features):
|
334 |
+
cat = paddle.concat([input_features, gating_features], axis=1)
|
335 |
+
alphas = self._gate_conv(cat)
|
336 |
+
x = input_features * (alphas + 1)
|
337 |
+
x = self.conv(x)
|
338 |
+
return x
|
ppmatting/transforms/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .transforms import *
|
ppmatting/transforms/transforms.py
ADDED
@@ -0,0 +1,791 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import random
|
17 |
+
import string
|
18 |
+
|
19 |
+
import cv2
|
20 |
+
import numpy as np
|
21 |
+
from paddleseg.transforms import functional
|
22 |
+
from paddleseg.cvlibs import manager
|
23 |
+
from paddleseg.utils import seg_env
|
24 |
+
from PIL import Image
|
25 |
+
|
26 |
+
|
27 |
+
@manager.TRANSFORMS.add_component
|
28 |
+
class Compose:
|
29 |
+
"""
|
30 |
+
Do transformation on input data with corresponding pre-processing and augmentation operations.
|
31 |
+
The shape of input data to all operations is [height, width, channels].
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(self, transforms, to_rgb=True):
|
35 |
+
if not isinstance(transforms, list):
|
36 |
+
raise TypeError('The transforms must be a list!')
|
37 |
+
self.transforms = transforms
|
38 |
+
self.to_rgb = to_rgb
|
39 |
+
|
40 |
+
def __call__(self, data):
|
41 |
+
"""
|
42 |
+
Args:
|
43 |
+
data (dict): The data to transform.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
dict: Data after transformation
|
47 |
+
"""
|
48 |
+
if 'trans_info' not in data:
|
49 |
+
data['trans_info'] = []
|
50 |
+
for op in self.transforms:
|
51 |
+
data = op(data)
|
52 |
+
if data is None:
|
53 |
+
return None
|
54 |
+
|
55 |
+
data['img'] = np.transpose(data['img'], (2, 0, 1))
|
56 |
+
for key in data.get('gt_fields', []):
|
57 |
+
if len(data[key].shape) == 2:
|
58 |
+
continue
|
59 |
+
data[key] = np.transpose(data[key], (2, 0, 1))
|
60 |
+
|
61 |
+
return data
|
62 |
+
|
63 |
+
|
64 |
+
@manager.TRANSFORMS.add_component
|
65 |
+
class LoadImages:
|
66 |
+
def __init__(self, to_rgb=False):
|
67 |
+
self.to_rgb = to_rgb
|
68 |
+
|
69 |
+
def __call__(self, data):
|
70 |
+
if isinstance(data['img'], str):
|
71 |
+
data['img'] = cv2.imread(data['img'])
|
72 |
+
for key in data.get('gt_fields', []):
|
73 |
+
if isinstance(data[key], str):
|
74 |
+
data[key] = cv2.imread(data[key], cv2.IMREAD_UNCHANGED)
|
75 |
+
# if alpha and trimap has 3 channels, extract one.
|
76 |
+
if key in ['alpha', 'trimap']:
|
77 |
+
if len(data[key].shape) > 2:
|
78 |
+
data[key] = data[key][:, :, 0]
|
79 |
+
|
80 |
+
if self.to_rgb:
|
81 |
+
data['img'] = cv2.cvtColor(data['img'], cv2.COLOR_BGR2RGB)
|
82 |
+
for key in data.get('gt_fields', []):
|
83 |
+
if len(data[key].shape) == 2:
|
84 |
+
continue
|
85 |
+
data[key] = cv2.cvtColor(data[key], cv2.COLOR_BGR2RGB)
|
86 |
+
|
87 |
+
return data
|
88 |
+
|
89 |
+
|
90 |
+
@manager.TRANSFORMS.add_component
|
91 |
+
class Resize:
|
92 |
+
def __init__(self, target_size=(512, 512), random_interp=False):
|
93 |
+
if isinstance(target_size, list) or isinstance(target_size, tuple):
|
94 |
+
if len(target_size) != 2:
|
95 |
+
raise ValueError(
|
96 |
+
'`target_size` should include 2 elements, but it is {}'.
|
97 |
+
format(target_size))
|
98 |
+
else:
|
99 |
+
raise TypeError(
|
100 |
+
"Type of `target_size` is invalid. It should be list or tuple, but it is {}"
|
101 |
+
.format(type(target_size)))
|
102 |
+
|
103 |
+
self.target_size = target_size
|
104 |
+
self.random_interp = random_interp
|
105 |
+
self.interps = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC]
|
106 |
+
|
107 |
+
def __call__(self, data):
|
108 |
+
if self.random_interp:
|
109 |
+
interp = np.random.choice(self.interps)
|
110 |
+
else:
|
111 |
+
interp = cv2.INTER_LINEAR
|
112 |
+
data['trans_info'].append(('resize', data['img'].shape[0:2]))
|
113 |
+
data['img'] = functional.resize(data['img'], self.target_size, interp)
|
114 |
+
for key in data.get('gt_fields', []):
|
115 |
+
if key == 'trimap':
|
116 |
+
data[key] = functional.resize(data[key], self.target_size,
|
117 |
+
cv2.INTER_NEAREST)
|
118 |
+
else:
|
119 |
+
data[key] = functional.resize(data[key], self.target_size,
|
120 |
+
interp)
|
121 |
+
return data
|
122 |
+
|
123 |
+
|
124 |
+
@manager.TRANSFORMS.add_component
|
125 |
+
class RandomResize:
|
126 |
+
"""
|
127 |
+
Resize image to a size determinned by `scale` and `size`.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
size(tuple|list): The reference size to resize. A tuple or list with length 2.
|
131 |
+
scale(tupel|list, optional): A range of scale base on `size`. A tuple or list with length 2. Default: None.
|
132 |
+
"""
|
133 |
+
|
134 |
+
def __init__(self, size=None, scale=None):
|
135 |
+
if isinstance(size, list) or isinstance(size, tuple):
|
136 |
+
if len(size) != 2:
|
137 |
+
raise ValueError(
|
138 |
+
'`size` should include 2 elements, but it is {}'.format(
|
139 |
+
size))
|
140 |
+
elif size is not None:
|
141 |
+
raise TypeError(
|
142 |
+
"Type of `size` is invalid. It should be list or tuple, but it is {}"
|
143 |
+
.format(type(size)))
|
144 |
+
|
145 |
+
if scale is not None:
|
146 |
+
if isinstance(scale, list) or isinstance(scale, tuple):
|
147 |
+
if len(scale) != 2:
|
148 |
+
raise ValueError(
|
149 |
+
'`scale` should include 2 elements, but it is {}'.
|
150 |
+
format(scale))
|
151 |
+
else:
|
152 |
+
raise TypeError(
|
153 |
+
"Type of `scale` is invalid. It should be list or tuple, but it is {}"
|
154 |
+
.format(type(scale)))
|
155 |
+
self.size = size
|
156 |
+
self.scale = scale
|
157 |
+
|
158 |
+
def __call__(self, data):
|
159 |
+
h, w = data['img'].shape[:2]
|
160 |
+
if self.scale is not None:
|
161 |
+
scale = np.random.uniform(self.scale[0], self.scale[1])
|
162 |
+
else:
|
163 |
+
scale = 1.
|
164 |
+
if self.size is not None:
|
165 |
+
scale_factor = max(self.size[0] / w, self.size[1] / h)
|
166 |
+
else:
|
167 |
+
scale_factor = 1
|
168 |
+
scale = scale * scale_factor
|
169 |
+
|
170 |
+
w = int(round(w * scale))
|
171 |
+
h = int(round(h * scale))
|
172 |
+
data['img'] = functional.resize(data['img'], (w, h))
|
173 |
+
for key in data.get('gt_fields', []):
|
174 |
+
if key == 'trimap':
|
175 |
+
data[key] = functional.resize(data[key], (w, h),
|
176 |
+
cv2.INTER_NEAREST)
|
177 |
+
else:
|
178 |
+
data[key] = functional.resize(data[key], (w, h))
|
179 |
+
return data
|
180 |
+
|
181 |
+
|
182 |
+
@manager.TRANSFORMS.add_component
|
183 |
+
class ResizeByLong:
|
184 |
+
"""
|
185 |
+
Resize the long side of an image to given size, and then scale the other side proportionally.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
long_size (int): The target size of long side.
|
189 |
+
"""
|
190 |
+
|
191 |
+
def __init__(self, long_size):
|
192 |
+
self.long_size = long_size
|
193 |
+
|
194 |
+
def __call__(self, data):
|
195 |
+
data['trans_info'].append(('resize', data['img'].shape[0:2]))
|
196 |
+
data['img'] = functional.resize_long(data['img'], self.long_size)
|
197 |
+
for key in data.get('gt_fields', []):
|
198 |
+
if key == 'trimap':
|
199 |
+
data[key] = functional.resize_long(data[key], self.long_size,
|
200 |
+
cv2.INTER_NEAREST)
|
201 |
+
else:
|
202 |
+
data[key] = functional.resize_long(data[key], self.long_size)
|
203 |
+
return data
|
204 |
+
|
205 |
+
|
206 |
+
@manager.TRANSFORMS.add_component
|
207 |
+
class ResizeByShort:
|
208 |
+
"""
|
209 |
+
Resize the short side of an image to given size, and then scale the other side proportionally.
|
210 |
+
|
211 |
+
Args:
|
212 |
+
short_size (int): The target size of short side.
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self, short_size):
|
216 |
+
self.short_size = short_size
|
217 |
+
|
218 |
+
def __call__(self, data):
|
219 |
+
data['trans_info'].append(('resize', data['img'].shape[0:2]))
|
220 |
+
data['img'] = functional.resize_short(data['img'], self.short_size)
|
221 |
+
for key in data.get('gt_fields', []):
|
222 |
+
if key == 'trimap':
|
223 |
+
data[key] = functional.resize_short(data[key], self.short_size,
|
224 |
+
cv2.INTER_NEAREST)
|
225 |
+
else:
|
226 |
+
data[key] = functional.resize_short(data[key], self.short_size)
|
227 |
+
return data
|
228 |
+
|
229 |
+
|
230 |
+
@manager.TRANSFORMS.add_component
|
231 |
+
class ResizeToIntMult:
|
232 |
+
"""
|
233 |
+
Resize to some int muitple, d.g. 32.
|
234 |
+
"""
|
235 |
+
|
236 |
+
def __init__(self, mult_int=32):
|
237 |
+
self.mult_int = mult_int
|
238 |
+
|
239 |
+
def __call__(self, data):
|
240 |
+
data['trans_info'].append(('resize', data['img'].shape[0:2]))
|
241 |
+
|
242 |
+
h, w = data['img'].shape[0:2]
|
243 |
+
rw = w - w % self.mult_int
|
244 |
+
rh = h - h % self.mult_int
|
245 |
+
data['img'] = functional.resize(data['img'], (rw, rh))
|
246 |
+
for key in data.get('gt_fields', []):
|
247 |
+
if key == 'trimap':
|
248 |
+
data[key] = functional.resize(data[key], (rw, rh),
|
249 |
+
cv2.INTER_NEAREST)
|
250 |
+
else:
|
251 |
+
data[key] = functional.resize(data[key], (rw, rh))
|
252 |
+
|
253 |
+
return data
|
254 |
+
|
255 |
+
|
256 |
+
@manager.TRANSFORMS.add_component
|
257 |
+
class Normalize:
|
258 |
+
"""
|
259 |
+
Normalize an image.
|
260 |
+
|
261 |
+
Args:
|
262 |
+
mean (list, optional): The mean value of a data set. Default: [0.5, 0.5, 0.5].
|
263 |
+
std (list, optional): The standard deviation of a data set. Default: [0.5, 0.5, 0.5].
|
264 |
+
|
265 |
+
Raises:
|
266 |
+
ValueError: When mean/std is not list or any value in std is 0.
|
267 |
+
"""
|
268 |
+
|
269 |
+
def __init__(self, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):
|
270 |
+
self.mean = mean
|
271 |
+
self.std = std
|
272 |
+
if not (isinstance(self.mean,
|
273 |
+
(list, tuple)) and isinstance(self.std,
|
274 |
+
(list, tuple))):
|
275 |
+
raise ValueError(
|
276 |
+
"{}: input type is invalid. It should be list or tuple".format(
|
277 |
+
self))
|
278 |
+
from functools import reduce
|
279 |
+
if reduce(lambda x, y: x * y, self.std) == 0:
|
280 |
+
raise ValueError('{}: std is invalid!'.format(self))
|
281 |
+
|
282 |
+
def __call__(self, data):
|
283 |
+
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
|
284 |
+
std = np.array(self.std)[np.newaxis, np.newaxis, :]
|
285 |
+
data['img'] = functional.normalize(data['img'], mean, std)
|
286 |
+
if 'fg' in data.get('gt_fields', []):
|
287 |
+
data['fg'] = functional.normalize(data['fg'], mean, std)
|
288 |
+
if 'bg' in data.get('gt_fields', []):
|
289 |
+
data['bg'] = functional.normalize(data['bg'], mean, std)
|
290 |
+
|
291 |
+
return data
|
292 |
+
|
293 |
+
|
294 |
+
@manager.TRANSFORMS.add_component
|
295 |
+
class RandomCropByAlpha:
|
296 |
+
"""
|
297 |
+
Randomly crop while centered on uncertain area by a certain probability.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
crop_size (tuple|list): The size you want to crop from image.
|
301 |
+
p (float): The probability centered on uncertain area.
|
302 |
+
|
303 |
+
"""
|
304 |
+
|
305 |
+
def __init__(self, crop_size=((320, 320), (480, 480), (640, 640)),
|
306 |
+
prob=0.5):
|
307 |
+
self.crop_size = crop_size
|
308 |
+
self.prob = prob
|
309 |
+
|
310 |
+
def __call__(self, data):
|
311 |
+
idex = np.random.randint(low=0, high=len(self.crop_size))
|
312 |
+
crop_w, crop_h = self.crop_size[idex]
|
313 |
+
|
314 |
+
img_h = data['img'].shape[0]
|
315 |
+
img_w = data['img'].shape[1]
|
316 |
+
if np.random.rand() < self.prob:
|
317 |
+
crop_center = np.where((data['alpha'] > 0) & (data['alpha'] < 255))
|
318 |
+
center_h_array, center_w_array = crop_center
|
319 |
+
if len(center_h_array) == 0:
|
320 |
+
return data
|
321 |
+
rand_ind = np.random.randint(len(center_h_array))
|
322 |
+
center_h = center_h_array[rand_ind]
|
323 |
+
center_w = center_w_array[rand_ind]
|
324 |
+
delta_h = crop_h // 2
|
325 |
+
delta_w = crop_w // 2
|
326 |
+
start_h = max(0, center_h - delta_h)
|
327 |
+
start_w = max(0, center_w - delta_w)
|
328 |
+
else:
|
329 |
+
start_h = 0
|
330 |
+
start_w = 0
|
331 |
+
if img_h > crop_h:
|
332 |
+
start_h = np.random.randint(img_h - crop_h + 1)
|
333 |
+
if img_w > crop_w:
|
334 |
+
start_w = np.random.randint(img_w - crop_w + 1)
|
335 |
+
|
336 |
+
end_h = min(img_h, start_h + crop_h)
|
337 |
+
end_w = min(img_w, start_w + crop_w)
|
338 |
+
|
339 |
+
data['img'] = data['img'][start_h:end_h, start_w:end_w]
|
340 |
+
for key in data.get('gt_fields', []):
|
341 |
+
data[key] = data[key][start_h:end_h, start_w:end_w]
|
342 |
+
|
343 |
+
return data
|
344 |
+
|
345 |
+
|
346 |
+
@manager.TRANSFORMS.add_component
|
347 |
+
class RandomCrop:
|
348 |
+
"""
|
349 |
+
Randomly crop
|
350 |
+
|
351 |
+
Args:
|
352 |
+
crop_size (tuple|list): The size you want to crop from image.
|
353 |
+
"""
|
354 |
+
|
355 |
+
def __init__(self, crop_size=((320, 320), (480, 480), (640, 640))):
|
356 |
+
if not isinstance(crop_size[0], (list, tuple)):
|
357 |
+
crop_size = [crop_size]
|
358 |
+
self.crop_size = crop_size
|
359 |
+
|
360 |
+
def __call__(self, data):
|
361 |
+
idex = np.random.randint(low=0, high=len(self.crop_size))
|
362 |
+
crop_w, crop_h = self.crop_size[idex]
|
363 |
+
img_h, img_w = data['img'].shape[0:2]
|
364 |
+
|
365 |
+
start_h = 0
|
366 |
+
start_w = 0
|
367 |
+
if img_h > crop_h:
|
368 |
+
start_h = np.random.randint(img_h - crop_h + 1)
|
369 |
+
if img_w > crop_w:
|
370 |
+
start_w = np.random.randint(img_w - crop_w + 1)
|
371 |
+
|
372 |
+
end_h = min(img_h, start_h + crop_h)
|
373 |
+
end_w = min(img_w, start_w + crop_w)
|
374 |
+
|
375 |
+
data['img'] = data['img'][start_h:end_h, start_w:end_w]
|
376 |
+
for key in data.get('gt_fields', []):
|
377 |
+
data[key] = data[key][start_h:end_h, start_w:end_w]
|
378 |
+
|
379 |
+
return data
|
380 |
+
|
381 |
+
|
382 |
+
@manager.TRANSFORMS.add_component
|
383 |
+
class LimitLong:
|
384 |
+
"""
|
385 |
+
Limit the long edge of image.
|
386 |
+
|
387 |
+
If the long edge is larger than max_long, resize the long edge
|
388 |
+
to max_long, while scale the short edge proportionally.
|
389 |
+
|
390 |
+
If the long edge is smaller than min_long, resize the long edge
|
391 |
+
to min_long, while scale the short edge proportionally.
|
392 |
+
|
393 |
+
Args:
|
394 |
+
max_long (int, optional): If the long edge of image is larger than max_long,
|
395 |
+
it will be resize to max_long. Default: None.
|
396 |
+
min_long (int, optional): If the long edge of image is smaller than min_long,
|
397 |
+
it will be resize to min_long. Default: None.
|
398 |
+
"""
|
399 |
+
|
400 |
+
def __init__(self, max_long=None, min_long=None):
|
401 |
+
if max_long is not None:
|
402 |
+
if not isinstance(max_long, int):
|
403 |
+
raise TypeError(
|
404 |
+
"Type of `max_long` is invalid. It should be int, but it is {}"
|
405 |
+
.format(type(max_long)))
|
406 |
+
if min_long is not None:
|
407 |
+
if not isinstance(min_long, int):
|
408 |
+
raise TypeError(
|
409 |
+
"Type of `min_long` is invalid. It should be int, but it is {}"
|
410 |
+
.format(type(min_long)))
|
411 |
+
if (max_long is not None) and (min_long is not None):
|
412 |
+
if min_long > max_long:
|
413 |
+
raise ValueError(
|
414 |
+
'`max_long should not smaller than min_long, but they are {} and {}'
|
415 |
+
.format(max_long, min_long))
|
416 |
+
self.max_long = max_long
|
417 |
+
self.min_long = min_long
|
418 |
+
|
419 |
+
def __call__(self, data):
|
420 |
+
h, w = data['img'].shape[:2]
|
421 |
+
long_edge = max(h, w)
|
422 |
+
target = long_edge
|
423 |
+
if (self.max_long is not None) and (long_edge > self.max_long):
|
424 |
+
target = self.max_long
|
425 |
+
elif (self.min_long is not None) and (long_edge < self.min_long):
|
426 |
+
target = self.min_long
|
427 |
+
|
428 |
+
data['trans_info'].append(('resize', data['img'].shape[0:2]))
|
429 |
+
if target != long_edge:
|
430 |
+
data['img'] = functional.resize_long(data['img'], target)
|
431 |
+
for key in data.get('gt_fields', []):
|
432 |
+
if key == 'trimap':
|
433 |
+
data[key] = functional.resize_long(data[key], target,
|
434 |
+
cv2.INTER_NEAREST)
|
435 |
+
else:
|
436 |
+
data[key] = functional.resize_long(data[key], target)
|
437 |
+
|
438 |
+
return data
|
439 |
+
|
440 |
+
|
441 |
+
@manager.TRANSFORMS.add_component
|
442 |
+
class LimitShort:
|
443 |
+
"""
|
444 |
+
Limit the short edge of image.
|
445 |
+
|
446 |
+
If the short edge is larger than max_short, resize the short edge
|
447 |
+
to max_short, while scale the long edge proportionally.
|
448 |
+
|
449 |
+
If the short edge is smaller than min_short, resize the short edge
|
450 |
+
to min_short, while scale the long edge proportionally.
|
451 |
+
|
452 |
+
Args:
|
453 |
+
max_short (int, optional): If the short edge of image is larger than max_short,
|
454 |
+
it will be resize to max_short. Default: None.
|
455 |
+
min_short (int, optional): If the short edge of image is smaller than min_short,
|
456 |
+
it will be resize to min_short. Default: None.
|
457 |
+
"""
|
458 |
+
|
459 |
+
def __init__(self, max_short=None, min_short=None):
|
460 |
+
if max_short is not None:
|
461 |
+
if not isinstance(max_short, int):
|
462 |
+
raise TypeError(
|
463 |
+
"Type of `max_short` is invalid. It should be int, but it is {}"
|
464 |
+
.format(type(max_short)))
|
465 |
+
if min_short is not None:
|
466 |
+
if not isinstance(min_short, int):
|
467 |
+
raise TypeError(
|
468 |
+
"Type of `min_short` is invalid. It should be int, but it is {}"
|
469 |
+
.format(type(min_short)))
|
470 |
+
if (max_short is not None) and (min_short is not None):
|
471 |
+
if min_short > max_short:
|
472 |
+
raise ValueError(
|
473 |
+
'`max_short should not smaller than min_short, but they are {} and {}'
|
474 |
+
.format(max_short, min_short))
|
475 |
+
self.max_short = max_short
|
476 |
+
self.min_short = min_short
|
477 |
+
|
478 |
+
def __call__(self, data):
|
479 |
+
h, w = data['img'].shape[:2]
|
480 |
+
short_edge = min(h, w)
|
481 |
+
target = short_edge
|
482 |
+
if (self.max_short is not None) and (short_edge > self.max_short):
|
483 |
+
target = self.max_short
|
484 |
+
elif (self.min_short is not None) and (short_edge < self.min_short):
|
485 |
+
target = self.min_short
|
486 |
+
|
487 |
+
data['trans_info'].append(('resize', data['img'].shape[0:2]))
|
488 |
+
if target != short_edge:
|
489 |
+
data['img'] = functional.resize_short(data['img'], target)
|
490 |
+
for key in data.get('gt_fields', []):
|
491 |
+
if key == 'trimap':
|
492 |
+
data[key] = functional.resize_short(data[key], target,
|
493 |
+
cv2.INTER_NEAREST)
|
494 |
+
else:
|
495 |
+
data[key] = functional.resize_short(data[key], target)
|
496 |
+
|
497 |
+
return data
|
498 |
+
|
499 |
+
|
500 |
+
@manager.TRANSFORMS.add_component
|
501 |
+
class RandomHorizontalFlip:
|
502 |
+
"""
|
503 |
+
Flip an image horizontally with a certain probability.
|
504 |
+
|
505 |
+
Args:
|
506 |
+
prob (float, optional): A probability of horizontally flipping. Default: 0.5.
|
507 |
+
"""
|
508 |
+
|
509 |
+
def __init__(self, prob=0.5):
|
510 |
+
self.prob = prob
|
511 |
+
|
512 |
+
def __call__(self, data):
|
513 |
+
if random.random() < self.prob:
|
514 |
+
data['img'] = functional.horizontal_flip(data['img'])
|
515 |
+
for key in data.get('gt_fields', []):
|
516 |
+
data[key] = functional.horizontal_flip(data[key])
|
517 |
+
|
518 |
+
return data
|
519 |
+
|
520 |
+
|
521 |
+
@manager.TRANSFORMS.add_component
|
522 |
+
class RandomBlur:
|
523 |
+
"""
|
524 |
+
Blurring an image by a Gaussian function with a certain probability.
|
525 |
+
|
526 |
+
Args:
|
527 |
+
prob (float, optional): A probability of blurring an image. Default: 0.1.
|
528 |
+
"""
|
529 |
+
|
530 |
+
def __init__(self, prob=0.1):
|
531 |
+
self.prob = prob
|
532 |
+
|
533 |
+
def __call__(self, data):
|
534 |
+
if self.prob <= 0:
|
535 |
+
n = 0
|
536 |
+
elif self.prob >= 1:
|
537 |
+
n = 1
|
538 |
+
else:
|
539 |
+
n = int(1.0 / self.prob)
|
540 |
+
if n > 0:
|
541 |
+
if np.random.randint(0, n) == 0:
|
542 |
+
radius = np.random.randint(3, 10)
|
543 |
+
if radius % 2 != 1:
|
544 |
+
radius = radius + 1
|
545 |
+
if radius > 9:
|
546 |
+
radius = 9
|
547 |
+
data['img'] = cv2.GaussianBlur(data['img'], (radius, radius), 0,
|
548 |
+
0)
|
549 |
+
for key in data.get('gt_fields', []):
|
550 |
+
if key == 'trimap':
|
551 |
+
continue
|
552 |
+
data[key] = cv2.GaussianBlur(data[key], (radius, radius), 0,
|
553 |
+
0)
|
554 |
+
return data
|
555 |
+
|
556 |
+
|
557 |
+
@manager.TRANSFORMS.add_component
|
558 |
+
class RandomDistort:
|
559 |
+
"""
|
560 |
+
Distort an image with random configurations.
|
561 |
+
|
562 |
+
Args:
|
563 |
+
brightness_range (float, optional): A range of brightness. Default: 0.5.
|
564 |
+
brightness_prob (float, optional): A probability of adjusting brightness. Default: 0.5.
|
565 |
+
contrast_range (float, optional): A range of contrast. Default: 0.5.
|
566 |
+
contrast_prob (float, optional): A probability of adjusting contrast. Default: 0.5.
|
567 |
+
saturation_range (float, optional): A range of saturation. Default: 0.5.
|
568 |
+
saturation_prob (float, optional): A probability of adjusting saturation. Default: 0.5.
|
569 |
+
hue_range (int, optional): A range of hue. Default: 18.
|
570 |
+
hue_prob (float, optional): A probability of adjusting hue. Default: 0.5.
|
571 |
+
"""
|
572 |
+
|
573 |
+
def __init__(self,
|
574 |
+
brightness_range=0.5,
|
575 |
+
brightness_prob=0.5,
|
576 |
+
contrast_range=0.5,
|
577 |
+
contrast_prob=0.5,
|
578 |
+
saturation_range=0.5,
|
579 |
+
saturation_prob=0.5,
|
580 |
+
hue_range=18,
|
581 |
+
hue_prob=0.5):
|
582 |
+
self.brightness_range = brightness_range
|
583 |
+
self.brightness_prob = brightness_prob
|
584 |
+
self.contrast_range = contrast_range
|
585 |
+
self.contrast_prob = contrast_prob
|
586 |
+
self.saturation_range = saturation_range
|
587 |
+
self.saturation_prob = saturation_prob
|
588 |
+
self.hue_range = hue_range
|
589 |
+
self.hue_prob = hue_prob
|
590 |
+
|
591 |
+
def __call__(self, data):
|
592 |
+
brightness_lower = 1 - self.brightness_range
|
593 |
+
brightness_upper = 1 + self.brightness_range
|
594 |
+
contrast_lower = 1 - self.contrast_range
|
595 |
+
contrast_upper = 1 + self.contrast_range
|
596 |
+
saturation_lower = 1 - self.saturation_range
|
597 |
+
saturation_upper = 1 + self.saturation_range
|
598 |
+
hue_lower = -self.hue_range
|
599 |
+
hue_upper = self.hue_range
|
600 |
+
ops = [
|
601 |
+
functional.brightness, functional.contrast, functional.saturation,
|
602 |
+
functional.hue
|
603 |
+
]
|
604 |
+
random.shuffle(ops)
|
605 |
+
params_dict = {
|
606 |
+
'brightness': {
|
607 |
+
'brightness_lower': brightness_lower,
|
608 |
+
'brightness_upper': brightness_upper
|
609 |
+
},
|
610 |
+
'contrast': {
|
611 |
+
'contrast_lower': contrast_lower,
|
612 |
+
'contrast_upper': contrast_upper
|
613 |
+
},
|
614 |
+
'saturation': {
|
615 |
+
'saturation_lower': saturation_lower,
|
616 |
+
'saturation_upper': saturation_upper
|
617 |
+
},
|
618 |
+
'hue': {
|
619 |
+
'hue_lower': hue_lower,
|
620 |
+
'hue_upper': hue_upper
|
621 |
+
}
|
622 |
+
}
|
623 |
+
prob_dict = {
|
624 |
+
'brightness': self.brightness_prob,
|
625 |
+
'contrast': self.contrast_prob,
|
626 |
+
'saturation': self.saturation_prob,
|
627 |
+
'hue': self.hue_prob
|
628 |
+
}
|
629 |
+
|
630 |
+
im = data['img'].astype('uint8')
|
631 |
+
im = Image.fromarray(im)
|
632 |
+
for id in range(len(ops)):
|
633 |
+
params = params_dict[ops[id].__name__]
|
634 |
+
params['im'] = im
|
635 |
+
prob = prob_dict[ops[id].__name__]
|
636 |
+
if np.random.uniform(0, 1) < prob:
|
637 |
+
im = ops[id](**params)
|
638 |
+
data['img'] = np.asarray(im)
|
639 |
+
|
640 |
+
for key in data.get('gt_fields', []):
|
641 |
+
if key in ['alpha', 'trimap']:
|
642 |
+
continue
|
643 |
+
else:
|
644 |
+
im = data[key].astype('uint8')
|
645 |
+
im = Image.fromarray(im)
|
646 |
+
for id in range(len(ops)):
|
647 |
+
params = params_dict[ops[id].__name__]
|
648 |
+
params['im'] = im
|
649 |
+
prob = prob_dict[ops[id].__name__]
|
650 |
+
if np.random.uniform(0, 1) < prob:
|
651 |
+
im = ops[id](**params)
|
652 |
+
data[key] = np.asarray(im)
|
653 |
+
return data
|
654 |
+
|
655 |
+
|
656 |
+
@manager.TRANSFORMS.add_component
|
657 |
+
class Padding:
|
658 |
+
"""
|
659 |
+
Add bottom-right padding to a raw image or annotation image.
|
660 |
+
|
661 |
+
Args:
|
662 |
+
target_size (list|tuple): The target size after padding.
|
663 |
+
im_padding_value (list, optional): The padding value of raw image.
|
664 |
+
Default: [127.5, 127.5, 127.5].
|
665 |
+
label_padding_value (int, optional): The padding value of annotation image. Default: 255.
|
666 |
+
|
667 |
+
Raises:
|
668 |
+
TypeError: When target_size is neither list nor tuple.
|
669 |
+
ValueError: When the length of target_size is not 2.
|
670 |
+
"""
|
671 |
+
|
672 |
+
def __init__(self, target_size, im_padding_value=(127.5, 127.5, 127.5)):
|
673 |
+
if isinstance(target_size, list) or isinstance(target_size, tuple):
|
674 |
+
if len(target_size) != 2:
|
675 |
+
raise ValueError(
|
676 |
+
'`target_size` should include 2 elements, but it is {}'.
|
677 |
+
format(target_size))
|
678 |
+
else:
|
679 |
+
raise TypeError(
|
680 |
+
"Type of target_size is invalid. It should be list or tuple, now is {}"
|
681 |
+
.format(type(target_size)))
|
682 |
+
|
683 |
+
self.target_size = target_size
|
684 |
+
self.im_padding_value = im_padding_value
|
685 |
+
|
686 |
+
def __call__(self, data):
|
687 |
+
im_height, im_width = data['img'].shape[0], data['img'].shape[1]
|
688 |
+
target_height = self.target_size[1]
|
689 |
+
target_width = self.target_size[0]
|
690 |
+
pad_height = max(0, target_height - im_height)
|
691 |
+
pad_width = max(0, target_width - im_width)
|
692 |
+
data['trans_info'].append(('padding', data['img'].shape[0:2]))
|
693 |
+
if (pad_height == 0) and (pad_width == 0):
|
694 |
+
return data
|
695 |
+
else:
|
696 |
+
data['img'] = cv2.copyMakeBorder(
|
697 |
+
data['img'],
|
698 |
+
0,
|
699 |
+
pad_height,
|
700 |
+
0,
|
701 |
+
pad_width,
|
702 |
+
cv2.BORDER_CONSTANT,
|
703 |
+
value=self.im_padding_value)
|
704 |
+
for key in data.get('gt_fields', []):
|
705 |
+
if key in ['trimap', 'alpha']:
|
706 |
+
value = 0
|
707 |
+
else:
|
708 |
+
value = self.im_padding_value
|
709 |
+
data[key] = cv2.copyMakeBorder(
|
710 |
+
data[key],
|
711 |
+
0,
|
712 |
+
pad_height,
|
713 |
+
0,
|
714 |
+
pad_width,
|
715 |
+
cv2.BORDER_CONSTANT,
|
716 |
+
value=value)
|
717 |
+
return data
|
718 |
+
|
719 |
+
|
720 |
+
@manager.TRANSFORMS.add_component
|
721 |
+
class RandomSharpen:
|
722 |
+
def __init__(self, prob=0.1):
|
723 |
+
if prob < 0:
|
724 |
+
self.prob = 0
|
725 |
+
elif prob > 1:
|
726 |
+
self.prob = 1
|
727 |
+
else:
|
728 |
+
self.prob = prob
|
729 |
+
|
730 |
+
def __call__(self, data):
|
731 |
+
if np.random.rand() > self.prob:
|
732 |
+
return data
|
733 |
+
|
734 |
+
radius = np.random.choice([0, 3, 5, 7, 9])
|
735 |
+
w = np.random.uniform(0.1, 0.5)
|
736 |
+
blur_img = cv2.GaussianBlur(data['img'], (radius, radius), 5)
|
737 |
+
data['img'] = cv2.addWeighted(data['img'], 1 + w, blur_img, -w, 0)
|
738 |
+
for key in data.get('gt_fields', []):
|
739 |
+
if key == 'trimap' or key == 'alpha':
|
740 |
+
continue
|
741 |
+
blur_img = cv2.GaussianBlur(data[key], (0, 0), 5)
|
742 |
+
data[key] = cv2.addWeighted(data[key], 1.5, blur_img, -0.5, 0)
|
743 |
+
|
744 |
+
return data
|
745 |
+
|
746 |
+
|
747 |
+
@manager.TRANSFORMS.add_component
|
748 |
+
class RandomNoise:
|
749 |
+
def __init__(self, prob=0.1):
|
750 |
+
if prob < 0:
|
751 |
+
self.prob = 0
|
752 |
+
elif prob > 1:
|
753 |
+
self.prob = 1
|
754 |
+
else:
|
755 |
+
self.prob = prob
|
756 |
+
|
757 |
+
def __call__(self, data):
|
758 |
+
if np.random.rand() > self.prob:
|
759 |
+
return data
|
760 |
+
mean = np.random.uniform(0, 0.04)
|
761 |
+
var = np.random.uniform(0, 0.001)
|
762 |
+
noise = np.random.normal(mean, var**0.5, data['img'].shape) * 255
|
763 |
+
data['img'] = data['img'] + noise
|
764 |
+
data['img'] = np.clip(data['img'], 0, 255)
|
765 |
+
|
766 |
+
return data
|
767 |
+
|
768 |
+
|
769 |
+
@manager.TRANSFORMS.add_component
|
770 |
+
class RandomReJpeg:
|
771 |
+
def __init__(self, prob=0.1):
|
772 |
+
if prob < 0:
|
773 |
+
self.prob = 0
|
774 |
+
elif prob > 1:
|
775 |
+
self.prob = 1
|
776 |
+
else:
|
777 |
+
self.prob = prob
|
778 |
+
|
779 |
+
def __call__(self, data):
|
780 |
+
if np.random.rand() > self.prob:
|
781 |
+
return data
|
782 |
+
q = np.random.randint(70, 95)
|
783 |
+
img = data['img'].astype('uint8')
|
784 |
+
|
785 |
+
# Ensure no conflicts between processes
|
786 |
+
tmp_name = str(os.getpid()) + '.jpg'
|
787 |
+
tmp_name = os.path.join(seg_env.TMP_HOME, tmp_name)
|
788 |
+
cv2.imwrite(tmp_name, img, [int(cv2.IMWRITE_JPEG_QUALITY), q])
|
789 |
+
data['img'] = cv2.imread(tmp_name)
|
790 |
+
|
791 |
+
return data
|
ppmatting/utils/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .estimate_foreground_ml import estimate_foreground_ml
|
2 |
+
from .utils import get_files, get_image_list, mkdir
|
ppmatting/utils/estimate_foreground_ml.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from numba import njit, prange
|
3 |
+
|
4 |
+
# The foreground estimation refer to pymatting [https://github.com/pymatting/pymatting/blob/master/pymatting/foreground/estimate_foreground_ml.py]
|
5 |
+
|
6 |
+
|
7 |
+
@njit("void(f4[:, :, :], f4[:, :, :])", cache=True, nogil=True, parallel=True)
|
8 |
+
def _resize_nearest_multichannel(dst, src):
|
9 |
+
"""
|
10 |
+
Internal method.
|
11 |
+
|
12 |
+
Resize image src to dst using nearest neighbors filtering.
|
13 |
+
Images must have multiple color channels, i.e. :code:`len(shape) == 3`.
|
14 |
+
|
15 |
+
Parameters
|
16 |
+
----------
|
17 |
+
dst: numpy.ndarray of type np.float32
|
18 |
+
output image
|
19 |
+
src: numpy.ndarray of type np.float32
|
20 |
+
input image
|
21 |
+
"""
|
22 |
+
h_src, w_src, depth = src.shape
|
23 |
+
h_dst, w_dst, depth = dst.shape
|
24 |
+
|
25 |
+
for y_dst in prange(h_dst):
|
26 |
+
for x_dst in range(w_dst):
|
27 |
+
x_src = max(0, min(w_src - 1, x_dst * w_src // w_dst))
|
28 |
+
y_src = max(0, min(h_src - 1, y_dst * h_src // h_dst))
|
29 |
+
|
30 |
+
for c in range(depth):
|
31 |
+
dst[y_dst, x_dst, c] = src[y_src, x_src, c]
|
32 |
+
|
33 |
+
|
34 |
+
@njit("void(f4[:, :], f4[:, :])", cache=True, nogil=True, parallel=True)
|
35 |
+
def _resize_nearest(dst, src):
|
36 |
+
"""
|
37 |
+
Internal method.
|
38 |
+
|
39 |
+
Resize image src to dst using nearest neighbors filtering.
|
40 |
+
Images must be grayscale, i.e. :code:`len(shape) == 3`.
|
41 |
+
|
42 |
+
Parameters
|
43 |
+
----------
|
44 |
+
dst: numpy.ndarray of type np.float32
|
45 |
+
output image
|
46 |
+
src: numpy.ndarray of type np.float32
|
47 |
+
input image
|
48 |
+
"""
|
49 |
+
h_src, w_src = src.shape
|
50 |
+
h_dst, w_dst = dst.shape
|
51 |
+
|
52 |
+
for y_dst in prange(h_dst):
|
53 |
+
for x_dst in range(w_dst):
|
54 |
+
x_src = max(0, min(w_src - 1, x_dst * w_src // w_dst))
|
55 |
+
y_src = max(0, min(h_src - 1, y_dst * h_src // h_dst))
|
56 |
+
|
57 |
+
dst[y_dst, x_dst] = src[y_src, x_src]
|
58 |
+
|
59 |
+
|
60 |
+
# TODO
|
61 |
+
# There should be an option to switch @njit(parallel=True) on or off.
|
62 |
+
# parallel=True would be faster, but might cause race conditions.
|
63 |
+
# User should have the option to turn it on or off.
|
64 |
+
@njit(
|
65 |
+
"Tuple((f4[:, :, :], f4[:, :, :]))(f4[:, :, :], f4[:, :], f4, i4, i4, i4, f4)",
|
66 |
+
cache=True,
|
67 |
+
nogil=True)
|
68 |
+
def _estimate_fb_ml(
|
69 |
+
input_image,
|
70 |
+
input_alpha,
|
71 |
+
regularization,
|
72 |
+
n_small_iterations,
|
73 |
+
n_big_iterations,
|
74 |
+
small_size,
|
75 |
+
gradient_weight, ):
|
76 |
+
h0, w0, depth = input_image.shape
|
77 |
+
|
78 |
+
dtype = np.float32
|
79 |
+
|
80 |
+
w_prev = 1
|
81 |
+
h_prev = 1
|
82 |
+
|
83 |
+
F_prev = np.empty((h_prev, w_prev, depth), dtype=dtype)
|
84 |
+
B_prev = np.empty((h_prev, w_prev, depth), dtype=dtype)
|
85 |
+
|
86 |
+
n_levels = int(np.ceil(np.log2(max(w0, h0))))
|
87 |
+
|
88 |
+
for i_level in range(n_levels + 1):
|
89 |
+
w = round(w0**(i_level / n_levels))
|
90 |
+
h = round(h0**(i_level / n_levels))
|
91 |
+
|
92 |
+
image = np.empty((h, w, depth), dtype=dtype)
|
93 |
+
alpha = np.empty((h, w), dtype=dtype)
|
94 |
+
|
95 |
+
_resize_nearest_multichannel(image, input_image)
|
96 |
+
_resize_nearest(alpha, input_alpha)
|
97 |
+
|
98 |
+
F = np.empty((h, w, depth), dtype=dtype)
|
99 |
+
B = np.empty((h, w, depth), dtype=dtype)
|
100 |
+
|
101 |
+
_resize_nearest_multichannel(F, F_prev)
|
102 |
+
_resize_nearest_multichannel(B, B_prev)
|
103 |
+
|
104 |
+
if w <= small_size and h <= small_size:
|
105 |
+
n_iter = n_small_iterations
|
106 |
+
else:
|
107 |
+
n_iter = n_big_iterations
|
108 |
+
|
109 |
+
b = np.zeros((2, depth), dtype=dtype)
|
110 |
+
|
111 |
+
dx = [-1, 1, 0, 0]
|
112 |
+
dy = [0, 0, -1, 1]
|
113 |
+
|
114 |
+
for i_iter in range(n_iter):
|
115 |
+
for y in prange(h):
|
116 |
+
for x in range(w):
|
117 |
+
a0 = alpha[y, x]
|
118 |
+
a1 = 1.0 - a0
|
119 |
+
|
120 |
+
a00 = a0 * a0
|
121 |
+
a01 = a0 * a1
|
122 |
+
# a10 = a01 can be omitted due to symmetry of matrix
|
123 |
+
a11 = a1 * a1
|
124 |
+
|
125 |
+
for c in range(depth):
|
126 |
+
b[0, c] = a0 * image[y, x, c]
|
127 |
+
b[1, c] = a1 * image[y, x, c]
|
128 |
+
|
129 |
+
for d in range(4):
|
130 |
+
x2 = max(0, min(w - 1, x + dx[d]))
|
131 |
+
y2 = max(0, min(h - 1, y + dy[d]))
|
132 |
+
|
133 |
+
gradient = abs(a0 - alpha[y2, x2])
|
134 |
+
|
135 |
+
da = regularization + gradient_weight * gradient
|
136 |
+
|
137 |
+
a00 += da
|
138 |
+
a11 += da
|
139 |
+
|
140 |
+
for c in range(depth):
|
141 |
+
b[0, c] += da * F[y2, x2, c]
|
142 |
+
b[1, c] += da * B[y2, x2, c]
|
143 |
+
|
144 |
+
determinant = a00 * a11 - a01 * a01
|
145 |
+
|
146 |
+
inv_det = 1.0 / determinant
|
147 |
+
|
148 |
+
b00 = inv_det * a11
|
149 |
+
b01 = inv_det * -a01
|
150 |
+
b11 = inv_det * a00
|
151 |
+
|
152 |
+
for c in range(depth):
|
153 |
+
F_c = b00 * b[0, c] + b01 * b[1, c]
|
154 |
+
B_c = b01 * b[0, c] + b11 * b[1, c]
|
155 |
+
|
156 |
+
F_c = max(0.0, min(1.0, F_c))
|
157 |
+
B_c = max(0.0, min(1.0, B_c))
|
158 |
+
|
159 |
+
F[y, x, c] = F_c
|
160 |
+
B[y, x, c] = B_c
|
161 |
+
|
162 |
+
F_prev = F
|
163 |
+
B_prev = B
|
164 |
+
|
165 |
+
w_prev = w
|
166 |
+
h_prev = h
|
167 |
+
|
168 |
+
return F, B
|
169 |
+
|
170 |
+
|
171 |
+
def estimate_foreground_ml(
|
172 |
+
image,
|
173 |
+
alpha,
|
174 |
+
regularization=1e-5,
|
175 |
+
n_small_iterations=10,
|
176 |
+
n_big_iterations=2,
|
177 |
+
small_size=32,
|
178 |
+
return_background=False,
|
179 |
+
gradient_weight=1.0, ):
|
180 |
+
"""Estimates the foreground of an image given its alpha matte.
|
181 |
+
|
182 |
+
See :cite:`germer2020multilevel` for reference.
|
183 |
+
|
184 |
+
Parameters
|
185 |
+
----------
|
186 |
+
image: numpy.ndarray
|
187 |
+
Input image with shape :math:`h \\times w \\times d`
|
188 |
+
alpha: numpy.ndarray
|
189 |
+
Input alpha matte shape :math:`h \\times w`
|
190 |
+
regularization: float
|
191 |
+
Regularization strength :math:`\\epsilon`, defaults to :math:`10^{-5}`.
|
192 |
+
Higher regularization results in smoother colors.
|
193 |
+
n_small_iterations: int
|
194 |
+
Number of iterations performed on small scale, defaults to :math:`10`
|
195 |
+
n_big_iterations: int
|
196 |
+
Number of iterations performed on large scale, defaults to :math:`2`
|
197 |
+
small_size: int
|
198 |
+
Threshold that determines at which size `n_small_iterations` should be used
|
199 |
+
return_background: bool
|
200 |
+
Whether to return the estimated background in addition to the foreground
|
201 |
+
gradient_weight: float
|
202 |
+
Larger values enforce smoother foregrounds, defaults to :math:`1`
|
203 |
+
|
204 |
+
Returns
|
205 |
+
-------
|
206 |
+
F: numpy.ndarray
|
207 |
+
Extracted foreground
|
208 |
+
B: numpy.ndarray
|
209 |
+
Extracted background
|
210 |
+
|
211 |
+
Example
|
212 |
+
-------
|
213 |
+
>>> from pymatting import *
|
214 |
+
>>> image = load_image("data/lemur/lemur.png", "RGB")
|
215 |
+
>>> alpha = load_image("data/lemur/lemur_alpha.png", "GRAY")
|
216 |
+
>>> F = estimate_foreground_ml(image, alpha, return_background=False)
|
217 |
+
>>> F, B = estimate_foreground_ml(image, alpha, return_background=True)
|
218 |
+
|
219 |
+
See Also
|
220 |
+
----
|
221 |
+
stack_images: This function can be used to place the foreground on a new background.
|
222 |
+
"""
|
223 |
+
|
224 |
+
foreground, background = _estimate_fb_ml(
|
225 |
+
image.astype(np.float32),
|
226 |
+
alpha.astype(np.float32),
|
227 |
+
regularization,
|
228 |
+
n_small_iterations,
|
229 |
+
n_big_iterations,
|
230 |
+
small_size,
|
231 |
+
gradient_weight, )
|
232 |
+
|
233 |
+
if return_background:
|
234 |
+
return foreground, background
|
235 |
+
|
236 |
+
return foreground
|
ppmatting/utils/utils.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
|
17 |
+
|
18 |
+
def get_files(root_path):
|
19 |
+
res = []
|
20 |
+
for root, dirs, files in os.walk(root_path, followlinks=True):
|
21 |
+
for f in files:
|
22 |
+
if f.endswith(('.jpg', '.png', '.jpeg', 'JPG')):
|
23 |
+
res.append(os.path.join(root, f))
|
24 |
+
return res
|
25 |
+
|
26 |
+
|
27 |
+
def get_image_list(image_path):
|
28 |
+
"""Get image list"""
|
29 |
+
valid_suffix = [
|
30 |
+
'.JPEG', '.jpeg', '.JPG', '.jpg', '.BMP', '.bmp', '.PNG', '.png'
|
31 |
+
]
|
32 |
+
image_list = []
|
33 |
+
image_dir = None
|
34 |
+
if os.path.isfile(image_path):
|
35 |
+
image_dir = None
|
36 |
+
if os.path.splitext(image_path)[-1] in valid_suffix:
|
37 |
+
image_list.append(image_path)
|
38 |
+
else:
|
39 |
+
image_dir = os.path.dirname(image_path)
|
40 |
+
with open(image_path, 'r') as f:
|
41 |
+
for line in f:
|
42 |
+
line = line.strip()
|
43 |
+
if len(line.split()) > 1:
|
44 |
+
raise RuntimeError(
|
45 |
+
'There should be only one image path per line in `image_path` file. Wrong line: {}'
|
46 |
+
.format(line))
|
47 |
+
image_list.append(os.path.join(image_dir, line))
|
48 |
+
elif os.path.isdir(image_path):
|
49 |
+
image_dir = image_path
|
50 |
+
for root, dirs, files in os.walk(image_path):
|
51 |
+
for f in files:
|
52 |
+
if '.ipynb_checkpoints' in root:
|
53 |
+
continue
|
54 |
+
if os.path.splitext(f)[-1] in valid_suffix:
|
55 |
+
image_list.append(os.path.join(root, f))
|
56 |
+
image_list.sort()
|
57 |
+
else:
|
58 |
+
raise FileNotFoundError(
|
59 |
+
'`image_path` is not found. it should be an image file or a directory including images'
|
60 |
+
)
|
61 |
+
|
62 |
+
if len(image_list) == 0:
|
63 |
+
raise RuntimeError('There are not image file in `image_path`')
|
64 |
+
|
65 |
+
return image_list, image_dir
|
66 |
+
|
67 |
+
|
68 |
+
def mkdir(path):
|
69 |
+
sub_dir = os.path.dirname(path)
|
70 |
+
if not os.path.exists(sub_dir):
|
71 |
+
os.makedirs(sub_dir)
|