File size: 8,979 Bytes
c1f7eaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

from mtcnn.mtcnn import MTCNN
from utils import *


cloth_examples = get_cloth_examples()
pose_examples = get_pose_examples()
face_detector = MTCNN()

# Description
title = r"""
<h1 align="center">IDM-VTON + Outfit Anyone in the Wild </h1>
"""

description = r"""
This demo combines <a href='https://github.com/yisol/IDM-VTON' target='_blank'><b>IDM-VTON </b></a> and <a href='https://github.com/selfitcamera/Outfit-Anyone-in-the-Wild' target='_blank'><b>Outfit Anyone in the Wild </b></a>
1. Human body detection and reconstruction using large human models from Outfit Anyone in the Wild.
2. Use IDM-VTON for single-picture clothing change without training.
3. Fix discordant parts of your image using the refine network from Outfit Anyone in the Wild.
This demo is for learning purposes only.
<b>IDM-VTON + Outfit Anyone in the Wild test results on </b> <a href='https://heybeautify.online/ClothData/Publics/Shows/shows/IDM_OutfitAnyone/IDM_OutfitAnyone.html' target='_blank'><b>mix01</b></a>.
<b>Outfit Anyone in the Wild test results on </b> <a href='https://heybeautify.online/ClothData/Publics/Shows/shows/man_v2/man_v2.html' target='_blank'><b>man01</b></a>.
<b>Outfit Anyone in the Wild test results on </b> <a href='https://heybeautify.online/ClothData/Publics/Shows/shows/cider/cider_0403.html' target='_blank'><b>woman01</b></a>.<br>
"""

css = """
.gradio-container {width: 85% !important}
"""

mk_guide = "If image does not display successfully after button clicked in your browser(mostly Mac+Chrome), try [this demo](https://openxlab.org.cn/apps/detail/jiangxiaoguo/OutfitAnyone-in-the-Wild) please"


def onUpload():
    return ""


def onClick(cloth_image, cloth_id, pose_image, pose_id, category, 
        denoise_steps, caption, request: gr.Request):
    if pose_image is None:
        return None, "no pose image found !", ""
    if isinstance(cloth_id, dict):
        cloth_id = cloth_id['label']
    if isinstance(pose_id, dict):
        pose_id = pose_id['label']
    if len(pose_id)>0:
        res = get_result_example(cloth_id, pose_id)
        assert os.path.exists(res), res
        return res, "Done! Use the pre-run results directly, the cloth size does not take effect ", ""
    else:
        try:
            client_ip = request.client.host
            x_forwarded_for = dict(request.headers).get('x-forwarded-for')
            if x_forwarded_for:
                client_ip = x_forwarded_for
                
            faces = face_detector.detect_faces(pose_image[:,:,::-1])
            if len(faces)==0:
                print(client_ip, 'faces num is 0! ', flush=True)
                return None, "Fatal Error !!! No face detected in pose image !!! ", ""
            else:
                x, y, w, h = faces[0]["box"]
                H, W = pose_image.shape[:2]
                max_face_ratio = 1/3.3
                if w/W>max_face_ratio or h/H>max_face_ratio:
                    return None, "Fatal Error !!! Headshot is not allowed in pose image!!!", ""
            if not check_warp(client_ip):
                return None, "Failed !!! Our server is under maintenance, please try again tomorrow", ""
            
            infId = upload_imgs(ApiUrl, OpenId, ApiKey, client_ip, cloth_image, pose_image)
            if infId==0:
                return None, "fail to upload", ""
            elif infId==2:
                return None, "There is a running task already, please wait and check the history tab. Please remember to give us a star on github, thx~", ""
            elif infId==3:
                return None, "can not creat task, you have exhausted free trial quota", ""

            isPub = publicFastSwap(ApiUrl, OpenId, ApiKey, infId, category, 
                caption, denoise_steps)
            if not isPub:
                return None, "fail to public you task", ""
            info =  "task has been created successfully, you can refresh the page 1~3 mins latter, and check the following history tab"
            info = info+"任务创建成功,请1-3分钟后刷新这个页面,历史结果会显示在下面的标签页"
            return None, info, ""
        except Exception as e:
            print(e)
            return None, "fail to create task", ""

def onLoad(request: gr.Request):
    client_ip = request.client.host
    x_forwarded_for = dict(request.headers).get('x-forwarded-for')
    if x_forwarded_for:
        client_ip = x_forwarded_for
    his_datas = [None for _ in range(10)]
    info = ''
    try:
        infs = getAllFastInfs(ApiUrl, OpenId, ApiKey, client_ip)
        print(client_ip, 'history infs: ', len(infs))
        cnt = 0
        finish_n, fail_n, queue_n = 0, 0, 0
        for i, inf in enumerate(infs):
            if inf['state']==2:
                if cnt>4: continue
                pose, res = inf['pose'], inf['res']
                his_datas[cnt*2] = f"<img src=\"{pose}\" >"
                his_datas[cnt*2+1] = f"<img src=\"{res}\" >"
                finish_n += 1
                cnt += 1
            elif inf['state'] in [-1, -2, 0]:
                fail_n += 1
            elif inf['state'] in [1]:
                queue_n += 1
        info = f"{client_ip}, you have {finish_n} successed tasks, {queue_n} running tasks, {fail_n} failed tasks."
        if fail_n>0:
            info = info+" Please upload a half/full-body human image, not just a clothing image!!!"
        if queue_n>0:
            position = inf['position']
            info = info+" Wait for 3~10 mins and refresh this page, successed results will display in the history tab at the bottom. "
            info = info+f" your task position in queue is {position}. "
            info = info+f" 任务正在排队,队列位置 {position}. "
        time.sleep(3)
    except Exception as e:
        print(e)
    his_datas = his_datas + [info]
    return his_datas

with gr.Blocks(css=css) as demo:
    # description
    gr.Markdown(title)
    gr.Markdown(description)
                    
    with gr.Row():
        with gr.Column():
            with gr.Column():
                cloth_image = gr.Image(value=None, type="numpy", label="")
                cloth_id = gr.Label(value=cloth_examples[0][0], label="Clothing Image", visible=False)
                example = gr.Examples(inputs=[cloth_id, cloth_image],
                                      examples_per_page=3,
                                      examples = cloth_examples)
        with gr.Column():
            with gr.Column():
                pose_image = gr.Image(value=None, type="numpy", label="")
                pose_id = gr.Label(value=pose_examples[0][0], label="Pose Image", visible=False)
                example_pose = gr.Examples(inputs=[pose_id, pose_image],
                                          examples_per_page=3,
                                          examples=pose_examples)
        with gr.Column():
            with gr.Column():
                category = gr.Dropdown(value="upper_cloth", choices=["upper_cloth", 
                    "lower_cloth", "full_body", "dresses"], interactive=True)
                denoise_steps = gr.Slider(20, 30, value=20, interactive=True, label="denoise_steps")
                caption = gr.Textbox(value="", interactive=True, label='cloth caption')
                
                info_text = gr.Textbox(value="", interactive=False, label='runtime information')
                run_button = gr.Button(value="Run")
                init_res = get_result_example(cloth_examples[0][0], pose_examples[0][0])
                res_image = gr.Image(label="result image", value=None, type="filepath")
                MK01 = gr.Markdown()

    with gr.Tab('history'):

        with gr.Row():
            MK02 = gr.Markdown()

        with gr.Row():
            his_pose_image1 = gr.HTML()
            his_res_image1 = gr.HTML()

        with gr.Row():
            his_pose_image2 = gr.HTML()
            his_res_image2 = gr.HTML()

        with gr.Row():
            his_pose_image3 = gr.HTML()
            his_res_image3 = gr.HTML()            

        with gr.Row():
            his_pose_image4 = gr.HTML()
            his_res_image4 = gr.HTML()            

        with gr.Row():
            his_pose_image5 = gr.HTML()
            his_res_image5 = gr.HTML()            

    run_button.click(fn=onClick, inputs=[cloth_image, cloth_id, pose_image, 
        pose_id, category, denoise_steps, caption, ], 
        outputs=[res_image, info_text, MK01])

    pose_image.upload(fn=onUpload, inputs=[], outputs=[pose_id],)
    cloth_image.upload(fn=onUpload, inputs=[], outputs=[cloth_id],)
    demo.load(onLoad, inputs=[], outputs=[his_pose_image1, his_res_image1,
        his_pose_image2, his_res_image2, his_pose_image3, his_res_image3,
        his_pose_image4, his_res_image4, his_pose_image5, his_res_image5,
        MK02])

if __name__ == "__main__":

    demo.queue(max_size=50)
    # demo.launch(server_name='0.0.0.0', server_port=225)
    demo.launch(server_name='0.0.0.0')