Spaces:
Running
Running
File size: 8,979 Bytes
c1f7eaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from mtcnn.mtcnn import MTCNN
from utils import *
cloth_examples = get_cloth_examples()
pose_examples = get_pose_examples()
face_detector = MTCNN()
# Description
title = r"""
<h1 align="center">IDM-VTON + Outfit Anyone in the Wild </h1>
"""
description = r"""
This demo combines <a href='https://github.com/yisol/IDM-VTON' target='_blank'><b>IDM-VTON </b></a> and <a href='https://github.com/selfitcamera/Outfit-Anyone-in-the-Wild' target='_blank'><b>Outfit Anyone in the Wild </b></a>
1. Human body detection and reconstruction using large human models from Outfit Anyone in the Wild.
2. Use IDM-VTON for single-picture clothing change without training.
3. Fix discordant parts of your image using the refine network from Outfit Anyone in the Wild.
This demo is for learning purposes only.
<b>IDM-VTON + Outfit Anyone in the Wild test results on </b> <a href='https://heybeautify.online/ClothData/Publics/Shows/shows/IDM_OutfitAnyone/IDM_OutfitAnyone.html' target='_blank'><b>mix01</b></a>.
<b>Outfit Anyone in the Wild test results on </b> <a href='https://heybeautify.online/ClothData/Publics/Shows/shows/man_v2/man_v2.html' target='_blank'><b>man01</b></a>.
<b>Outfit Anyone in the Wild test results on </b> <a href='https://heybeautify.online/ClothData/Publics/Shows/shows/cider/cider_0403.html' target='_blank'><b>woman01</b></a>.<br>
"""
css = """
.gradio-container {width: 85% !important}
"""
mk_guide = "If image does not display successfully after button clicked in your browser(mostly Mac+Chrome), try [this demo](https://openxlab.org.cn/apps/detail/jiangxiaoguo/OutfitAnyone-in-the-Wild) please"
def onUpload():
return ""
def onClick(cloth_image, cloth_id, pose_image, pose_id, category,
denoise_steps, caption, request: gr.Request):
if pose_image is None:
return None, "no pose image found !", ""
if isinstance(cloth_id, dict):
cloth_id = cloth_id['label']
if isinstance(pose_id, dict):
pose_id = pose_id['label']
if len(pose_id)>0:
res = get_result_example(cloth_id, pose_id)
assert os.path.exists(res), res
return res, "Done! Use the pre-run results directly, the cloth size does not take effect ", ""
else:
try:
client_ip = request.client.host
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
if x_forwarded_for:
client_ip = x_forwarded_for
faces = face_detector.detect_faces(pose_image[:,:,::-1])
if len(faces)==0:
print(client_ip, 'faces num is 0! ', flush=True)
return None, "Fatal Error !!! No face detected in pose image !!! ", ""
else:
x, y, w, h = faces[0]["box"]
H, W = pose_image.shape[:2]
max_face_ratio = 1/3.3
if w/W>max_face_ratio or h/H>max_face_ratio:
return None, "Fatal Error !!! Headshot is not allowed in pose image!!!", ""
if not check_warp(client_ip):
return None, "Failed !!! Our server is under maintenance, please try again tomorrow", ""
infId = upload_imgs(ApiUrl, OpenId, ApiKey, client_ip, cloth_image, pose_image)
if infId==0:
return None, "fail to upload", ""
elif infId==2:
return None, "There is a running task already, please wait and check the history tab. Please remember to give us a star on github, thx~", ""
elif infId==3:
return None, "can not creat task, you have exhausted free trial quota", ""
isPub = publicFastSwap(ApiUrl, OpenId, ApiKey, infId, category,
caption, denoise_steps)
if not isPub:
return None, "fail to public you task", ""
info = "task has been created successfully, you can refresh the page 1~3 mins latter, and check the following history tab"
info = info+"任务创建成功,请1-3分钟后刷新这个页面,历史结果会显示在下面的标签页"
return None, info, ""
except Exception as e:
print(e)
return None, "fail to create task", ""
def onLoad(request: gr.Request):
client_ip = request.client.host
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
if x_forwarded_for:
client_ip = x_forwarded_for
his_datas = [None for _ in range(10)]
info = ''
try:
infs = getAllFastInfs(ApiUrl, OpenId, ApiKey, client_ip)
print(client_ip, 'history infs: ', len(infs))
cnt = 0
finish_n, fail_n, queue_n = 0, 0, 0
for i, inf in enumerate(infs):
if inf['state']==2:
if cnt>4: continue
pose, res = inf['pose'], inf['res']
his_datas[cnt*2] = f"<img src=\"{pose}\" >"
his_datas[cnt*2+1] = f"<img src=\"{res}\" >"
finish_n += 1
cnt += 1
elif inf['state'] in [-1, -2, 0]:
fail_n += 1
elif inf['state'] in [1]:
queue_n += 1
info = f"{client_ip}, you have {finish_n} successed tasks, {queue_n} running tasks, {fail_n} failed tasks."
if fail_n>0:
info = info+" Please upload a half/full-body human image, not just a clothing image!!!"
if queue_n>0:
position = inf['position']
info = info+" Wait for 3~10 mins and refresh this page, successed results will display in the history tab at the bottom. "
info = info+f" your task position in queue is {position}. "
info = info+f" 任务正在排队,队列位置 {position}. "
time.sleep(3)
except Exception as e:
print(e)
his_datas = his_datas + [info]
return his_datas
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
with gr.Column():
cloth_image = gr.Image(value=None, type="numpy", label="")
cloth_id = gr.Label(value=cloth_examples[0][0], label="Clothing Image", visible=False)
example = gr.Examples(inputs=[cloth_id, cloth_image],
examples_per_page=3,
examples = cloth_examples)
with gr.Column():
with gr.Column():
pose_image = gr.Image(value=None, type="numpy", label="")
pose_id = gr.Label(value=pose_examples[0][0], label="Pose Image", visible=False)
example_pose = gr.Examples(inputs=[pose_id, pose_image],
examples_per_page=3,
examples=pose_examples)
with gr.Column():
with gr.Column():
category = gr.Dropdown(value="upper_cloth", choices=["upper_cloth",
"lower_cloth", "full_body", "dresses"], interactive=True)
denoise_steps = gr.Slider(20, 30, value=20, interactive=True, label="denoise_steps")
caption = gr.Textbox(value="", interactive=True, label='cloth caption')
info_text = gr.Textbox(value="", interactive=False, label='runtime information')
run_button = gr.Button(value="Run")
init_res = get_result_example(cloth_examples[0][0], pose_examples[0][0])
res_image = gr.Image(label="result image", value=None, type="filepath")
MK01 = gr.Markdown()
with gr.Tab('history'):
with gr.Row():
MK02 = gr.Markdown()
with gr.Row():
his_pose_image1 = gr.HTML()
his_res_image1 = gr.HTML()
with gr.Row():
his_pose_image2 = gr.HTML()
his_res_image2 = gr.HTML()
with gr.Row():
his_pose_image3 = gr.HTML()
his_res_image3 = gr.HTML()
with gr.Row():
his_pose_image4 = gr.HTML()
his_res_image4 = gr.HTML()
with gr.Row():
his_pose_image5 = gr.HTML()
his_res_image5 = gr.HTML()
run_button.click(fn=onClick, inputs=[cloth_image, cloth_id, pose_image,
pose_id, category, denoise_steps, caption, ],
outputs=[res_image, info_text, MK01])
pose_image.upload(fn=onUpload, inputs=[], outputs=[pose_id],)
cloth_image.upload(fn=onUpload, inputs=[], outputs=[cloth_id],)
demo.load(onLoad, inputs=[], outputs=[his_pose_image1, his_res_image1,
his_pose_image2, his_res_image2, his_pose_image3, his_res_image3,
his_pose_image4, his_res_image4, his_pose_image5, his_res_image5,
MK02])
if __name__ == "__main__":
demo.queue(max_size=50)
# demo.launch(server_name='0.0.0.0', server_port=225)
demo.launch(server_name='0.0.0.0')
|