Update app.py
Browse files- used MML de model instead of SpeechT5
- translated whisper transcription to German with gen kwarg language = 'de'
- updated docstring
app.py
CHANGED
@@ -3,7 +3,8 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import
|
|
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -12,38 +13,38 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
-
|
20 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
-
inputs =
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
return speech.cpu()
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
37 |
-
synthesised_speech = synthesise(translated_text)
|
38 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
39 |
return 16000, synthesised_speech
|
40 |
|
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and
|
45 |
-
[
|
46 |
-
|
47 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
48 |
"""
|
49 |
|
@@ -61,7 +62,6 @@ file_translate = gr.Interface(
|
|
61 |
fn=speech_to_speech_translation,
|
62 |
inputs=gr.Audio(source="upload", type="filepath"),
|
63 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
64 |
-
examples=[["./example.wav"]],
|
65 |
title=title,
|
66 |
description=description,
|
67 |
)
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import VitsModel, VitsTokenizer, pipeline
|
7 |
+
|
8 |
|
9 |
|
10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
13 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
14 |
|
15 |
# load text-to-speech checkpoint and speaker embeddings
|
16 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
|
17 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
def translate(audio):
|
21 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={'task':'transcribe', 'language':'de'})
|
22 |
return outputs["text"]
|
23 |
|
24 |
|
25 |
def synthesise(text):
|
26 |
+
inputs = tokenizer(text, return_tensors="pt")
|
27 |
+
input_ids = inputs["input_ids"]
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(input_ids)
|
31 |
+
|
32 |
+
speech = outputs["waveform"]
|
33 |
return speech.cpu()
|
34 |
|
35 |
|
36 |
def speech_to_speech_translation(audio):
|
37 |
translated_text = translate(audio)
|
38 |
+
synthesised_speech = synthesise(translated_text).squeeze()
|
39 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
40 |
return 16000, synthesised_speech
|
41 |
|
42 |
+
|
43 |
|
44 |
title = "Cascaded STST"
|
45 |
description = """
|
46 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and VITS Kim et al., 2021
|
47 |
+
[MMS-TTS](https://huggingface.co/Matthijs/mms-tts-deu) model for text-to-speech in German:
|
|
|
48 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
49 |
"""
|
50 |
|
|
|
62 |
fn=speech_to_speech_translation,
|
63 |
inputs=gr.Audio(source="upload", type="filepath"),
|
64 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
|
|
65 |
title=title,
|
66 |
description=description,
|
67 |
)
|