semaj83 commited on
Commit
6d40044
1 Parent(s): dbfdf1a

Update app.py

Browse files

- used MML de model instead of SpeechT5
- translated whisper transcription to German with gen kwarg language = 'de'
- updated docstring

Files changed (1) hide show
  1. app.py +16 -16
app.py CHANGED
@@ -3,7 +3,8 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
 
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -12,38 +13,38 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
-
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
 
 
32
  return speech.cpu()
33
 
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
- synthesised_speech = synthesise(translated_text)
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
  return 16000, synthesised_speech
40
 
 
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
@@ -61,7 +62,6 @@ file_translate = gr.Interface(
61
  fn=speech_to_speech_translation,
62
  inputs=gr.Audio(source="upload", type="filepath"),
63
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
64
- examples=[["./example.wav"]],
65
  title=title,
66
  description=description,
67
  )
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import VitsModel, VitsTokenizer, pipeline
7
+
8
 
9
 
10
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
13
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
14
 
15
  # load text-to-speech checkpoint and speaker embeddings
16
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
17
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
 
 
 
 
 
18
 
19
 
20
  def translate(audio):
21
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={'task':'transcribe', 'language':'de'})
22
  return outputs["text"]
23
 
24
 
25
  def synthesise(text):
26
+ inputs = tokenizer(text, return_tensors="pt")
27
+ input_ids = inputs["input_ids"]
28
+
29
+ with torch.no_grad():
30
+ outputs = model(input_ids)
31
+
32
+ speech = outputs["waveform"]
33
  return speech.cpu()
34
 
35
 
36
  def speech_to_speech_translation(audio):
37
  translated_text = translate(audio)
38
+ synthesised_speech = synthesise(translated_text).squeeze()
39
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
40
  return 16000, synthesised_speech
41
 
42
+
43
 
44
  title = "Cascaded STST"
45
  description = """
46
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and VITS Kim et al., 2021
47
+ [MMS-TTS](https://huggingface.co/Matthijs/mms-tts-deu) model for text-to-speech in German:
 
48
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
49
  """
50
 
 
62
  fn=speech_to_speech_translation,
63
  inputs=gr.Audio(source="upload", type="filepath"),
64
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
 
65
  title=title,
66
  description=description,
67
  )