Spaces:
Runtime error
Runtime error
update!
Browse files- 0.001861_submarine _ submarine_0.9862991.jpg +0 -0
- 0.003473_cliff _ cliff_0.51112.jpg +0 -0
- 0.004658_spatula _ spatula_0.35416836.jpg +0 -0
- app.py +103 -34
- example_image.png +0 -0
0.001861_submarine _ submarine_0.9862991.jpg
ADDED
0.003473_cliff _ cliff_0.51112.jpg
ADDED
0.004658_spatula _ spatula_0.35416836.jpg
ADDED
app.py
CHANGED
@@ -4,45 +4,114 @@ from PIL import Image
|
|
4 |
import torch
|
5 |
import matplotlib.pyplot as plt
|
6 |
import cv2
|
|
|
|
|
7 |
|
8 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
9 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
|
35 |
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
|
36 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>"
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
import matplotlib.pyplot as plt
|
6 |
import cv2
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
|
10 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
11 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
12 |
|
13 |
+
|
14 |
+
def process_image(image, prompt, threhsold, alpha_value, draw_rectangles):
|
15 |
+
inputs = processor(
|
16 |
+
text=prompt, images=image, padding="max_length", return_tensors="pt"
|
17 |
+
)
|
18 |
+
|
19 |
+
# predict
|
20 |
+
with torch.no_grad():
|
21 |
+
outputs = model(**inputs)
|
22 |
+
preds = outputs.logits
|
23 |
+
|
24 |
+
pred = torch.sigmoid(preds)
|
25 |
+
mat = pred.cpu().numpy()
|
26 |
+
mask = Image.fromarray(np.uint8(mat * 255), "L")
|
27 |
+
mask = mask.convert("RGB")
|
28 |
+
mask = mask.resize(image.size)
|
29 |
+
mask = np.array(mask)[:, :, 0]
|
30 |
+
|
31 |
+
# normalize the mask
|
32 |
+
mask_min = mask.min()
|
33 |
+
mask_max = mask.max()
|
34 |
+
mask = (mask - mask_min) / (mask_max - mask_min)
|
35 |
+
|
36 |
+
# threshold the mask
|
37 |
+
bmask = mask > threhsold
|
38 |
+
# zero out values below the threshold
|
39 |
+
mask[mask < threhsold] = 0
|
40 |
+
|
41 |
+
fig, ax = plt.subplots()
|
42 |
+
ax.imshow(image)
|
43 |
+
ax.imshow(mask, alpha=alpha_value, cmap="jet")
|
44 |
+
|
45 |
+
if draw_rectangles:
|
46 |
+
contours, hierarchy = cv2.findContours(
|
47 |
+
bmask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
48 |
+
)
|
49 |
+
for contour in contours:
|
50 |
+
x, y, w, h = cv2.boundingRect(contour)
|
51 |
+
rect = plt.Rectangle(
|
52 |
+
(x, y), w, h, fill=False, edgecolor="yellow", linewidth=2
|
53 |
+
)
|
54 |
+
ax.add_patch(rect)
|
55 |
+
|
56 |
+
ax.axis("off")
|
57 |
+
plt.tight_layout()
|
58 |
+
|
59 |
+
return fig, mask
|
60 |
+
|
61 |
+
|
62 |
title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
|
63 |
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
|
64 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>"
|
65 |
|
66 |
+
|
67 |
+
with gr.Blocks() as demo:
|
68 |
+
gr.Markdown("# CLIPSeg: Image Segmentation Using Text and Image Prompts")
|
69 |
+
gr.Markdown(article)
|
70 |
+
gr.Markdown(description)
|
71 |
+
gr.Markdown(
|
72 |
+
"*Example images are taken from the [ImageNet-A](https://paperswithcode.com/dataset/imagenet-a) dataset*"
|
73 |
+
)
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column():
|
77 |
+
input_image = gr.Image(type="pil")
|
78 |
+
input_prompt = gr.Textbox(label="Please describe what you want to identify")
|
79 |
+
input_slider_T = gr.Slider(
|
80 |
+
minimum=0, maximum=1, value=0.4, label="Threshold"
|
81 |
+
)
|
82 |
+
input_slider_A = gr.Slider(minimum=0, maximum=1, value=0.5, label="Alpha")
|
83 |
+
draw_rectangles = gr.Checkbox(label="Draw rectangles")
|
84 |
+
btn_process = gr.Button(label="Process")
|
85 |
+
|
86 |
+
with gr.Column():
|
87 |
+
output_plot = gr.Plot(label="Segmentation Result")
|
88 |
+
output_image = gr.Image(label="Mask")
|
89 |
+
|
90 |
+
btn_process.click(
|
91 |
+
process_image,
|
92 |
+
inputs=[
|
93 |
+
input_image,
|
94 |
+
input_prompt,
|
95 |
+
input_slider_T,
|
96 |
+
input_slider_A,
|
97 |
+
draw_rectangles,
|
98 |
+
],
|
99 |
+
outputs=[output_plot, output_image],
|
100 |
+
)
|
101 |
+
|
102 |
+
gr.Examples(
|
103 |
+
[
|
104 |
+
["0.003473_cliff _ cliff_0.51112.jpg", "dog", 0.5, 0.5, True],
|
105 |
+
["0.001861_submarine _ submarine_0.9862991.jpg", "beacon", 0.55, 0.4, True],
|
106 |
+
["0.004658_spatula _ spatula_0.35416836.jpg", "banana", 0.4, 0.5, True],
|
107 |
+
],
|
108 |
+
inputs=[
|
109 |
+
input_image,
|
110 |
+
input_prompt,
|
111 |
+
input_slider_T,
|
112 |
+
input_slider_A,
|
113 |
+
draw_rectangles,
|
114 |
+
],
|
115 |
+
)
|
116 |
+
|
117 |
+
demo.launch()
|
example_image.png
DELETED
Binary file (253 kB)
|
|