Spaces:
Running
Running
import os.path | |
import gdown | |
import gradio as gr | |
import torch | |
from Model import TRCaptionNet, clip_transform | |
model_ckpt = "./checkpoints/TRCaptionNet_L14_berturk.pth" | |
if not os.path.exists(model_ckpt): | |
os.makedirs("./checkpoints/", exist_ok=True) | |
url = 'https://drive.google.com/u/0/uc?id=14Ll1PIQhsMSypHT34Rt9voz_zaAf4Xh9&export=download&confirm=t&uuid=9b4bf589-d438-4b4f-a37c-fc34b0a63a5d&at=AB6BwCAY8xK0EZiPGv2YT7isL8pG:1697575816291' | |
gdown.download(url, model_ckpt, quiet=False) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# device = "cpu" | |
preprocess = clip_transform(224) | |
model = TRCaptionNet({ | |
"max_length": 35, | |
"clip": "ViT-L/14", | |
"bert": "dbmdz/bert-base-turkish-cased", | |
"proj": True, | |
"proj_num_head": 16 | |
}) | |
model.load_state_dict(torch.load(model_ckpt, map_location=device)["model"], strict=True) | |
model = model.to(device) | |
model.eval() | |
def inference(raw_image, min_length, repetition_penalty): | |
batch = preprocess(raw_image).unsqueeze(0).to(device) | |
caption = model.generate(batch, min_length=min_length, repetition_penalty=repetition_penalty)[0] | |
return caption | |
inputs = [gr.Image(type='pil', interactive=False,), | |
gr.Slider(minimum=6, maximum=22, value=11, label="MINIMUM CAPTION LENGTH", step=1), | |
gr.Slider(minimum=1, maximum=2, value=1.6, label="REPETITION PENALTY")] | |
outputs = gr.components.Textbox(label="Caption") | |
title = "TRCaptionNet" | |
paper_link = "" | |
github_link = "https://github.com/serdaryildiz/TRCaptionNet" | |
description = f"<p style='text-align: center'><a href='{github_link}' target='_blank'>TRCaptionNet</a> : A novel and accurate deep Turkish image captioning model with vision transformer based image encoders and deep linguistic text decoders" | |
examples = [ | |
["images/test1.jpg"], | |
["images/test2.jpg"], | |
["images/test3.jpg"], | |
["images/test4.jpg"] | |
] | |
article = f"<p style='text-align: center'><a href='{paper_link}' target='_blank'>Paper</a> | <a href='{github_link}' target='_blank'>Github Repo</a></p>" | |
css = ".output-image, .input-image, .image-preview {height: 600px !important}" | |
iface = gr.Interface(fn=inference, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
description=description, | |
examples=examples, | |
article=article, | |
css=css) | |
iface.launch() | |