import gradio as gr import spaces #gr.load("models/sergon19/green_bg_LoRa10").launch() import torch from diffusers import DiffusionPipeline, AutoencoderKL vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.load_lora_weights("sergon19/green_bg_LoRa10") _ = pipe.to("cuda") @spaces.GPU def generate_image(prompt): image = pipe(prompt=prompt, num_inference_steps=25).images[0] return image # Adding examples to the Gradio interface examples = [ ["A serene landscape with mountains and a river in sgc style"], ["A futuristic city skyline at night in sgc style"], ["A military plane flying over the pacific in sgc style"], ["A beach scene with a pirate ship visible in the ocean in sgc style"], ["A vibrant underwater scene with coral reefs and fish in sgc style"], ["A magical forest with glowing plants and creatures in sgc style"], ] iface = gr.Interface(fn=generate_image, inputs="text", outputs="image", examples=examples) iface.launch()