import gradio as gr from transformers import pipeline # Load pre-trained text generation pipeline generator = pipeline("text-generation", model="gpt2") # Define the function to generate text def generate_text(prompt): generated = generator(prompt, max_length=50, num_return_sequences=1) return generated[0]['generated_text'] # Create the Gradio interface iface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="Text Generation", description="Generate text using GPT-2" ) # Launch the interface if __name__ == "__main__": iface.launch()