|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import lru_cache |
|
|
|
import gradio as gr |
|
import h5py |
|
import numpy as np |
|
from fsspec import url_to_fs |
|
from matplotlib import cm |
|
from PIL import Image |
|
import av |
|
import io |
|
|
|
|
|
repo_id = "lhoestq/turbulent_radiative_layer_tcool_demo" |
|
set_path = f"hf://datasets/{repo_id}/**/*.hdf5" |
|
fs, _ = url_to_fs(set_path) |
|
paths = fs.glob(set_path) |
|
files = {path: h5py.File(fs.open(path, "rb", cache_type="none"), "r") for path in paths} |
|
|
|
def get_scalar_fields(path: str) -> list[str]: |
|
|
|
return list(files[path]["t0_fields"].keys()) |
|
|
|
def get_trajectories(path: str, field: str) -> list[int]: |
|
|
|
return list(range(len(files[path]["t0_fields"][field]))) |
|
|
|
@lru_cache(maxsize=4) |
|
def get_images(path: str, scalar_field: str, trajectory: int) -> list[Image.Image]: |
|
|
|
out = files[path]["t0_fields"][scalar_field][trajectory] |
|
out = np.log(out) |
|
out = (out - out.min()) / (out.max() - out.min()) |
|
out = np.uint8(cm.RdBu_r(out) * 255) |
|
return [Image.fromarray(img) for img in out] |
|
|
|
fps = 25 |
|
|
|
def get_video(path: str, scalar_field: str, trajectory: int) -> str: |
|
video_filename = 'output_vid.webm' |
|
|
|
out = files[path]["t0_fields"][scalar_field][trajectory] |
|
out = np.log(out) |
|
out = (out - out.min()) / (out.max() - out.min()) |
|
out = np.uint8(cm.RdBu_r(out) * 255) |
|
|
|
output = av.open(video_filename, 'w') |
|
stream = output.add_stream('libvpx-vp9', str(fps)) |
|
width, height = out[0].shape[1], out[0].shape[0] |
|
stream.width = width |
|
stream.height = height |
|
stream.pix_fmt = 'yuv444p' |
|
|
|
|
|
for img in out: |
|
image = Image.fromarray(img) |
|
frame = av.VideoFrame.from_image(image) |
|
packet = stream.encode(frame) |
|
output.mux(packet) |
|
|
|
|
|
packet = stream.encode(None) |
|
output.mux(packet) |
|
output.close() |
|
return video_filename |
|
|
|
|
|
|
|
|
|
default_scalar_fields = get_scalar_fields(paths[0]) |
|
default_trajectories = get_trajectories(paths[0], default_scalar_fields[0]) |
|
default_images = get_images(paths[0], default_scalar_fields[0], default_trajectories[0]) |
|
default_video = get_video(paths[0], default_scalar_fields[0], default_trajectories[0]) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(f"# 💠 HDF5 Viewer for the [{repo_id}](https://huggingface.co/datasets/{repo_id}) Dataset 🌊") |
|
gr.Markdown(f"Showing files at `{set_path}`") |
|
with gr.Row(): |
|
files_dropdown = gr.Dropdown(choices=paths, value=paths[0], label="File", scale=4) |
|
scalar_fields_dropdown = gr.Dropdown(choices=default_scalar_fields, value=default_scalar_fields[0], label="Physical field") |
|
trajectory_dropdown = gr.Dropdown(choices=default_trajectories, value=default_trajectories[0], label="Trajectory") |
|
gallery = gr.Gallery(default_images, preview=False, selected_index=len(default_images) // 2) |
|
gr.Markdown("_Tip: click on the image to go forward or backwards_") |
|
video = gr.Video(default_video) |
|
|
|
@files_dropdown.select(inputs=[files_dropdown], outputs=[scalar_fields_dropdown, trajectory_dropdown, gallery, video]) |
|
def _update_file(path: str): |
|
scalar_fields = get_scalar_fields(path) |
|
trajectories = get_trajectories(path, scalar_fields[0]) |
|
images = get_images(path, scalar_fields[0], trajectories[0]) |
|
vid = get_video(path, scalar_fields[0], trajectories[0]) |
|
yield { |
|
scalar_fields_dropdown: gr.Dropdown(choices=scalar_fields, value=scalar_fields[0]), |
|
trajectory_dropdown: gr.Dropdown(choices=trajectories, value=trajectories[0]), |
|
gallery: gr.Gallery(images), |
|
video: gr.Video(vid) |
|
} |
|
yield {gallery: gr.Gallery(selected_index=len(default_images) // 2)} |
|
|
|
@scalar_fields_dropdown.select(inputs=[files_dropdown, scalar_fields_dropdown], outputs=[trajectory_dropdown, gallery, video]) |
|
def _update_scalar_field(path: str, scalar_field: str): |
|
trajectories = get_trajectories(path, scalar_field) |
|
images = get_images(path, scalar_field, trajectories[0]) |
|
vid = get_video(path, scalar_field, trajectories[0]) |
|
yield { |
|
trajectory_dropdown: gr.Dropdown(choices=trajectories, value=trajectories[0]), |
|
gallery: gr.Gallery(images), |
|
video: gr.Video(vid) |
|
} |
|
yield {gallery: gr.Gallery(selected_index=len(default_images) // 2)} |
|
|
|
@trajectory_dropdown.select(inputs=[files_dropdown, scalar_fields_dropdown, trajectory_dropdown], outputs=[gallery, video]) |
|
def _update_trajectory(path: str, scalar_field: str, trajectory: int): |
|
images = get_images(path, scalar_field, trajectory) |
|
vid = get_video(path, scalar_field, trajectory) |
|
yield {gallery: gr.Gallery(images), video: gr.Video(vid)} |
|
yield {gallery: gr.Gallery(selected_index=len(default_images) // 2)} |
|
|
|
demo.launch() |