Spaces:
Build error
Build error
# -*- coding: utf-8 -*- | |
"""HS_Text_REC_Games_Gradio_Blocks.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/19yJ8RC70IDljwSmPlqtOzWz192gwLAHF | |
""" | |
import pandas as pd | |
import numpy as np | |
from fuzzywuzzy import fuzz | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import gradio as gr | |
df = pd.read_csv("Metacritic_Reviews_Only.csv", error_bad_lines=False, encoding='utf-8') | |
#Remove title from review | |
def remove_title(row): | |
game_title = row['Game Title'] | |
body_text = row['Reviews'] | |
new_doc = body_text.replace(game_title, "") | |
return new_doc | |
df['Reviews'] = df.apply(remove_title, axis=1) | |
#drop redundant column | |
df = df.drop(['Unnamed: 0'], axis=1) | |
df.dropna(inplace=True) #Drop Null Reviews | |
# Instantiate the vectorizer object to the vectorizer variable | |
#Minimum word count 2 to be included, words that appear in over 70% of docs should not be included | |
vectorizer = TfidfVectorizer(min_df=2, max_df=0.7) | |
# Fit and transform the plot column | |
vectorized_data = vectorizer.fit_transform(df['Reviews']) | |
# Create Dataframe from TF-IDFarray | |
tfidf_df = pd.DataFrame(vectorized_data.toarray(), columns=vectorizer.get_feature_names()) | |
# Assign the game titles to the index | |
tfidf_df.index = df['Game Title'] | |
# Find the cosine similarity measures between all game and assign the results to cosine_similarity_array. | |
cosine_similarity_array = cosine_similarity(tfidf_df) | |
# Create a DataFrame from the cosine_similarity_array with tfidf_df.index as its rows and columns. | |
cosine_similarity_df = pd.DataFrame(cosine_similarity_array, index=tfidf_df.index, columns=tfidf_df.index) | |
# Find the values for the game Batman: Arkham City | |
cosine_similarity_series = cosine_similarity_df.loc['Batman: Arkham City'] | |
# Sort these values highest to lowest | |
ordered_similarities = cosine_similarity_series.sort_values(ascending=False) | |
# Print the results | |
print(ordered_similarities) | |
# create a function to find the closest title | |
def matching_score(a,b): | |
#fuzz.ratio(a,b) calculates the Levenshtein Distance between a and b, and returns the score for the distance | |
return fuzz.ratio(a,b) | |
# exactly the same, the score becomes 100 | |
#Convert index to title_year | |
def get_title_from_index(index): | |
return df[df.index == index]['Game Title'].values[0] | |
# A function to return the most similar title to the words a user type | |
# Without this, the recommender only works when a user enters the exact title which the data has. | |
def find_closest_title(title): | |
#matching_score(a,b) > a is the current row, b is the title we're trying to match | |
leven_scores = list(enumerate(df['Game Title'].apply(matching_score, b=title))) #[(0, 30), (1,95), (2, 19)~~] A tuple of distances per index | |
sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True) #Sorts list of tuples by distance [(1, 95), (3, 49), (0, 30)~~] | |
closest_title = get_title_from_index(sorted_leven_scores[0][0]) | |
distance_score = sorted_leven_scores[0][1] | |
return closest_title, distance_score | |
# Bejeweled Twist, 100 | |
def find_closest_titles(title): | |
leven_scores = list(enumerate(df['Game Title'].apply(matching_score, b=title))) #[(0, 30), (1,95), (2, 19)~~] A tuple of distances per index | |
sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True) #Sorts list of tuples by distance [(1, 95), (3, 49), (0, 30)~~] | |
closest_titles = [get_title_from_index(sorted_leven_scores[i][0]) for i in range(5)] | |
distance_scores = [sorted_leven_scores[i][1] for i in range(5)] | |
return closest_titles, distance_scores | |
# Bejeweled Twist, 100 | |
def recommend_games_v1(game1, game2, game3, max_results): | |
#Counter for Ranking | |
number = 1 | |
print('Recommended because you played {}, {} and {}:\n'.format(game1, game2, game3)) | |
list_of_games_enjoyed = [game1, game2, game3] | |
games_enjoyed_df = tfidf_df.reindex(list_of_games_enjoyed) | |
user_prof = games_enjoyed_df.mean() | |
tfidf_subset_df = tfidf_df.drop([game1, game2, game3], axis=0) | |
similarity_array = cosine_similarity(user_prof.values.reshape(1, -1), tfidf_subset_df) | |
similarity_df = pd.DataFrame(similarity_array.T, index=tfidf_subset_df.index, columns=["similarity_score"]) | |
# Sort the values from high to low by the values in the similarity_score | |
sorted_similarity_df = similarity_df.sort_values(by="similarity_score", ascending=False) | |
number = 0 | |
rank = 1 | |
rank_range = [] | |
name_list = [] | |
score_list = [] | |
for n in sorted_similarity_df.index: | |
if rank <= max_results: | |
rank_range.append(rank) | |
name_list.append(n) | |
score_list.append(str(round(sorted_similarity_df.iloc[number]['similarity_score']*100,2)) + "% ") #format score as a percentage | |
number+=1 | |
rank +=1 | |
#Turn lists into a dictionary | |
data = {'Rank': rank_range, 'Game Title': name_list, '% Match': score_list} | |
rec_table = pd.DataFrame.from_dict(data) #Convert dictionary into dataframe | |
rec_table.set_index('Rank', inplace=True) #Make Rank column the index | |
return rec_table | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown( | |
""" | |
# Game Recommendations | |
Input 3 games you enjoyed playing and use the dropdown to confirm your selections. Hopefully they are registered in the database. Once all 3 have been chosen, please generate your recommendations. | |
""" | |
) | |
options = ['Dragonball', 'Batman', 'Tekken'] | |
def Dropdown_list(x): | |
new_options = [*options, x + " Remastered", x + ": The Remake", x + ": Game of the Year Edition", x + " Steelbook Edition"] | |
return gr.Dropdown.update(choices=new_options) | |
with gr.Column(visible=True): | |
first_entry = gr.Textbox(label="Game Title 1") | |
first_dropdown = gr.Dropdown(choices=[], label="Closest Matches") | |
update_first = gr.Button("Match Closest Title 1") | |
with gr.Column(visible=True): | |
second_entry = gr.Textbox(label="Game Title 2") | |
second_dropdown = gr.Dropdown(label="Closest Matches") | |
update_second = gr.Button("Match Closest Title 2") | |
with gr.Column(visible=True): | |
third_entry = gr.Textbox(label="Game Title 3") | |
third_dropdown = gr.Dropdown(label="Closest Matches") | |
update_third = gr.Button("Match Closest Title 3") | |
with gr.Row(): | |
slider = gr.Slider(1, 20, step=1) | |
with gr.Row(): | |
generate = gr.Button("Generate") | |
results = gr.Dataframe(label="Top Results") | |
def filter_matches(entry): | |
top_matches = find_closest_titles(entry) | |
top_matches = list(top_matches[0]) | |
return gr.Dropdown.update(choices=top_matches) #, gr.update(visible=True) | |
def new_match(text): | |
top_match = find_closest_title(text) | |
return text | |
first_entry.change(new_match, inputs=first_entry, outputs=first_dropdown) | |
update_first.click(filter_matches, inputs=first_dropdown, outputs=first_dropdown) | |
second_entry.change(new_match, inputs=second_entry, outputs=second_dropdown) | |
update_second.click(filter_matches, inputs=second_dropdown, outputs=second_dropdown) | |
third_entry.change(new_match, inputs=third_entry, outputs=third_dropdown) | |
update_third.click(filter_matches, inputs=third_dropdown, outputs=third_dropdown) | |
generate.click(recommend_games_v1, inputs=[first_dropdown, second_dropdown, third_dropdown, slider], outputs=results) | |
demo.launch() |