seyia92coding's picture
Update app.py
f2b7050
raw
history blame
3.46 kB
# -*- coding: utf-8 -*-
"""HS_Recomm_Metacritic_Gradio.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1cIAUS8Z2U2DXPEVmRdou9mqI0vwNT0_0
"""
import pandas as pd
import numpy as np
import scipy as sp
from scipy import sparse
from sklearn.metrics.pairwise import cosine_similarity
from fuzzywuzzy import fuzz
import gradio as gr
meta_df = pd.read_csv("Metacritic_Scores_File.csv", error_bad_lines=False, encoding='utf-8')
meta_df = meta_df[['game', 'reviewer_ID', 'score']]
df_game_names = pd.read_csv("Game_Titles_IDs.csv", error_bad_lines=False, encoding='utf-8')
#We will create a pivot table of users as rows and games as columns.
#The pivot table will help us make the calcuations of similarity between the reviewers.
pivot = meta_df.pivot_table(index=['reviewer_ID'], columns=['game'], values='score')
#Applying lambda function to multiple rows using Dataframe.apply()
#(x-np.mean(x))/(np.max(x)-np.min(x)) = Formula
pivot_n = pivot.apply(lambda x: (x-np.mean(x))/(np.max(x)-np.min(x)), axis=1)
# step 2 - Fill NaNs with Zeros
pivot_n.fillna(0, inplace=True)
# step 3 - Transpose the pivot table
pivot_n = pivot_n.T
# step 4 - Locate the columns that are not zero (unrated)
pivot_n = pivot_n.loc[:, (pivot_n != 0).any(axis=0)]
# step 5 - Create a sparse matrix based on our pivot table
piv_sparse = sp.sparse.csr_matrix(pivot_n.values)
#Compute cosine similarity between samples in X and Y.
game_similarity = cosine_similarity(piv_sparse)
#Turn our similarity kernel matrix into a dataframe
game_sim_df = pd.DataFrame(game_similarity, index = pivot_n.index, columns = pivot_n.index)
# create a function to find the closest title
def matching_score(a,b):
#fuzz.ratio(a,b) calculates the Levenshtein Distance between a and b, and returns the score for the distance
return fuzz.ratio(a,b)
# exactly the same, the score becomes 100
# a function to convert index to title
def get_title_from_index(index):
return df_game_names.iloc[index]['game']
# a function to return the most similar title to the words a user type
def find_closest_title(title):
#matching_score(a,b) > a is the current row, b is the title we're trying to match
leven_scores = list(enumerate(df_game_names['game'].apply(matching_score, b=title)))
sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True)
closest_title = get_title_from_index(sorted_leven_scores[0][0])
distance_score = sorted_leven_scores[0][1]
return closest_title, distance_score
# Bejeweled Twist, 100
def game_recommendation(game):
#Insert closest title here
game, distance_score = find_closest_title(game)
#Counter for Ranking
number = 1
print('Recommended because you played {}:\n'.format(game))
for n in game_sim_df.sort_values(by = game, ascending = False).index[1:6]:
print("#" + str(number) + ": " + n + ", " + str(round(game_sim_df[game][n]*100,2)) + "% " + "match")
number +=1
recommender_interface = gr.Interface(game_recommendation, ["text"],
["text"], title="Top 5 Game Recommendations", description="This is a Recommendation Engine based on how Metacritic professional reviewers have scored games up to 2019 (apologies for the out of date data). Simply input a game you have enjoyed playing and it should return 5 games that have been rated similarily")
recommender_interface.launch(debug=True)