seyia92coding commited on
Commit
5bcbd08
1 Parent(s): 524a705

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -18
app.py CHANGED
@@ -9,12 +9,11 @@ Original file is located at
9
 
10
  import pandas as pd
11
  import numpy as np
12
- !pip install fuzzywuzzy
13
  from fuzzywuzzy import fuzz
14
  from sklearn.feature_extraction.text import TfidfVectorizer
15
  from sklearn.metrics.pairwise import cosine_similarity
16
 
17
- df = pd.read_csv("/content/Metacritic_Reviews_Only.csv", error_bad_lines=False, encoding='utf-8')
18
 
19
  #Remove title from review
20
  def remove_title(row):
@@ -48,18 +47,6 @@ cosine_similarity_array = cosine_similarity(tfidf_df)
48
  # Create a DataFrame from the cosine_similarity_array with tfidf_df.index as its rows and columns.
49
  cosine_similarity_df = pd.DataFrame(cosine_similarity_array, index=tfidf_df.index, columns=tfidf_df.index)
50
 
51
- # Print the top 5 rows of the DataFrame
52
- # cosine_similarity_df.head()
53
-
54
- # # Find the values for the game Batman: Arkham City
55
- # cosine_similarity_series = cosine_similarity_df.loc['Batman: Arkham City']
56
-
57
- # # Sort these values highest to lowest
58
- # ordered_similarities = cosine_similarity_series.sort_values(ascending=False)
59
-
60
- # # Print the results
61
- # print(ordered_similarities)
62
-
63
  # create a function to find the closest title
64
  def matching_score(a,b):
65
  #fuzz.ratio(a,b) calculates the Levenshtein Distance between a and b, and returns the score for the distance
@@ -81,7 +68,7 @@ def find_closest_title(title):
81
  return closest_title, distance_score
82
  # Bejeweled Twist, 100
83
 
84
- find_closest_title('Batman Arkham Knight')
85
 
86
  """# Build Recommender Function
87
 
@@ -139,9 +126,7 @@ def recommend_games(game1, game2, game3, keyword1, keyword2, keyword3, max_resul
139
  continue
140
 
141
 
142
- recommend_games('Mortal Kombat', 'Street Fighter', 'Overwatch', 'Kombat', 'Fighter', 'Overwatch', 5)
143
-
144
- !pip install gradio
145
 
146
  import gradio as gr
147
 
 
9
 
10
  import pandas as pd
11
  import numpy as np
 
12
  from fuzzywuzzy import fuzz
13
  from sklearn.feature_extraction.text import TfidfVectorizer
14
  from sklearn.metrics.pairwise import cosine_similarity
15
 
16
+ df = pd.read_csv("Metacritic_Reviews_Only.csv", error_bad_lines=False, encoding='utf-8')
17
 
18
  #Remove title from review
19
  def remove_title(row):
 
47
  # Create a DataFrame from the cosine_similarity_array with tfidf_df.index as its rows and columns.
48
  cosine_similarity_df = pd.DataFrame(cosine_similarity_array, index=tfidf_df.index, columns=tfidf_df.index)
49
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  # create a function to find the closest title
51
  def matching_score(a,b):
52
  #fuzz.ratio(a,b) calculates the Levenshtein Distance between a and b, and returns the score for the distance
 
68
  return closest_title, distance_score
69
  # Bejeweled Twist, 100
70
 
71
+ #find_closest_title('Batman Arkham Knight')
72
 
73
  """# Build Recommender Function
74
 
 
126
  continue
127
 
128
 
129
+ # recommend_games('Mortal Kombat', 'Street Fighter', 'Overwatch', 'Kombat', 'Fighter', 'Overwatch', 5)
 
 
130
 
131
  import gradio as gr
132