sdrgfergert / app.py
sdfswefrwerwe's picture
lol
3e0bc32
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import requests, re, base64, string, random
from PIL import Image, ImageEnhance
from io import BytesIO
import os
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-printed")
model = VisionEncoderDecoderModel.from_pretrained("jonahgoldberg/bk_wht_8kun")
def random_string(string_length):
input = string.ascii_lowercase + string.digits
return ''.join(random.choice(input) for i in range(string_length))
# # load image examples
# urls = [
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nfcb5.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/p57fn.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w2yp7.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/pme86.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w4nfx.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nf8b8.png'
# ]
# for idx, url in enumerate(urls):
# image = Image.open(requests.get(url, stream=True).raw)
# image.save(f"image_{idx}.png")
def execit(command):
return os.system(command)
###git add *.txt && git add *.py && git commit -m "lol" && git push
def process_image(image):
# prepare image
image_data = re.sub('^data:image/.+;base64,', '', image)
im = Image.open(BytesIO(base64.b64decode(image_data))).convert("RGB")
filter = ImageEnhance.Color(im)
im = filter.enhance(0)
# input_location = f"{random_string(9)}.png"
# outputfile_tmp = f"{random_string(9)}.png"
# outputfile_usable = f"{random_string(9)}.png"
# execit("input_location="+input_location)
# execit("outputfile_tmp="+outputfile_tmp)
# execit("outputfile_usable="+outputfile_usable)
# im.save(input_location, "png")
# execit('''gegl -x "<?xml version='1.0' encoding='UTF-8'?> <gegl> <node operation='gegl:ripple'> <params> <param name='amplitude'>9.9</param> <param name='period'>125.0</param> <param name='sampler-type'>nearest</param> <param name='abyss-policy'>none</param> </params> </node> <node operation='gegl:brightness-contrast'> <params> <param name='contrast'>5</param> <param name='brightness'>-1.0</param> </params> </node> <node operation='gegl:c2g'/> <node operation='gegl:load'> <params> <param name='path'>"$input_location"</param> </params> </node> </gegl>" -o $outputfile_tmp''')
# execit('convert $outputfile_tmp -background white -alpha remove -alpha off $outputfile_usable')
#Take's the picture
pixel_values = processor(im, return_tensors="pt").pixel_values
# generate (no beam search)
generated_ids = model.generate(pixel_values)
# os.remove(input_location)
# os.remove(outputfile_tmp)
# os.remove(outputfile_usable)
# decode
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
title = "8kun captcha solver 1 in 8"
description = "Due to events. in 8chan staff moderation. I am attacking it. The gamergate shitposting days are over. and so is 8chan."
# article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
# examples =[["image_0.png"], ["image_1.png"], ["image_2.png"], ["image_3.png"], ["image_4.png"], ["image_5.png"]]
#css = """.output_image, .input_image {height: 600px !important}"""
iface = gr.Interface(fn=process_image,
# inputs=gr.inputs.Image(type="pil"),
inputs=gr.Textbox(placeholder="base64 string (right-click => copy-link) ..."),
outputs=gr.outputs.Textbox(),
title=title,
description=description,
# article=article,
# examples=examples
)
iface.launch(debug=True)