sgonzalezsilot commited on
Commit
3f3b7d6
1 Parent(s): a796eab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -2
app.py CHANGED
@@ -3,6 +3,7 @@ from huggingface_hub import from_pretrained_keras
3
  from huggingface_hub import KerasModelHubMixin
4
  import transformers
5
  from transformers import AutoTokenizer
 
6
 
7
 
8
  m = from_pretrained_keras('sgonzalezsilot/FakeNews-Detection-Twitter-Thesis')
@@ -41,8 +42,16 @@ def bert_encode(tokenizer,data,maximum_length) :
41
  def get_news(input_text):
42
  sentence_length = 110
43
  train_input_ids,train_attention_masks = bert_encode(tokenizer,input_text,sentence_length)
44
-
45
- return m([train_input_ids,train_attention_masks])
 
 
 
 
 
 
 
 
46
 
47
  iface = gr.Interface(fn = get_news,
48
  inputs = "text",
 
3
  from huggingface_hub import KerasModelHubMixin
4
  import transformers
5
  from transformers import AutoTokenizer
6
+ import numpy as np
7
 
8
 
9
  m = from_pretrained_keras('sgonzalezsilot/FakeNews-Detection-Twitter-Thesis')
 
42
  def get_news(input_text):
43
  sentence_length = 110
44
  train_input_ids,train_attention_masks = bert_encode(tokenizer,input_text,sentence_length)
45
+
46
+ pred = m.predict([train_input_ids,train_attention_masks])
47
+ pred = np.round(pred)
48
+ pred = pred.flatten()
49
+
50
+ if pred == 1:
51
+ result = "Fake News"
52
+ else:
53
+ result = "True News"
54
+ return result
55
 
56
  iface = gr.Interface(fn = get_news,
57
  inputs = "text",