sgonzalezsilot commited on
Commit
65d7807
1 Parent(s): 312338f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -0
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import from_pretrained_keras
3
+ m = from_pretrained_keras('sgonzalezsilot/FakeNews-Detection-Twitter-Thesis')
4
+
5
+ def bert_encode(tokenizer,data,maximum_length) :
6
+ input_ids = []
7
+ attention_masks = []
8
+
9
+
10
+ for i in range(len(data)):
11
+ encoded = tokenizer.encode_plus(
12
+
13
+ data[i],
14
+ add_special_tokens=True,
15
+ max_length=maximum_length,
16
+ pad_to_max_length=True,
17
+ truncation = True,
18
+ return_attention_mask=True,
19
+ )
20
+
21
+ input_ids.append(encoded['input_ids'])
22
+ attention_masks.append(encoded['attention_mask'])
23
+
24
+ return np.array(input_ids),np.array(attention_masks)
25
+
26
+ train_encodings = tokenizer(train_texts, truncation=True, padding=True)
27
+ test_encodings = tokenizer(test_texts, truncation=True, padding=True)
28
+
29
+ MODEL = "digitalepidemiologylab/covid-twitter-bert-v2"
30
+ tokenizer, roberta_model = getTokenizerAndModel(MODEL, model_normalization=False, from_pt = False, regularization=False)
31
+
32
+ sentence_length = 110
33
+ train_input_ids,train_attention_masks = bert_encode(tokenizer,train_texts,sentence_length)
34
+ test_input_ids,test_attention_masks = bert_encode(tokenizer,test_texts,sentence_length)
35
+
36
+ def get_news(input_text):
37
+ return sentiment(input_text)
38
+
39
+ iface = gr.Interface(fn = get_news,
40
+ inputs = "text",
41
+ outputs = ['text'],
42
+ title = 'Fake News',
43
+ description="")
44
+
45
+ iface.launch(inline = False)