sgonzalezsilot commited on
Commit
de25c83
1 Parent(s): 77f7bba

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -8
app.py CHANGED
@@ -8,6 +8,9 @@ from transformers import AutoTokenizer
8
  m = from_pretrained_keras('sgonzalezsilot/FakeNews-Detection-Twitter-Thesis')
9
  # model = from_pretrained_keras("keras-io/cct")
10
 
 
 
 
11
  def bert_encode(tokenizer,data,maximum_length) :
12
  input_ids = []
13
  attention_masks = []
@@ -29,18 +32,16 @@ def bert_encode(tokenizer,data,maximum_length) :
29
 
30
  return np.array(input_ids),np.array(attention_masks)
31
 
32
- train_encodings = tokenizer(train_texts, truncation=True, padding=True)
33
- test_encodings = tokenizer(test_texts, truncation=True, padding=True)
 
34
 
35
- MODEL = "digitalepidemiologylab/covid-twitter-bert-v2"
36
- tokenizer = AutoTokenizer.from_pretrained(MODEL)
37
 
38
- sentence_length = 110
39
- train_input_ids,train_attention_masks = bert_encode(tokenizer,train_texts,sentence_length)
40
- test_input_ids,test_attention_masks = bert_encode(tokenizer,test_texts,sentence_length)
41
 
42
  def get_news(input_text):
43
- return sentiment(input_text)
 
 
44
 
45
  iface = gr.Interface(fn = get_news,
46
  inputs = "text",
 
8
  m = from_pretrained_keras('sgonzalezsilot/FakeNews-Detection-Twitter-Thesis')
9
  # model = from_pretrained_keras("keras-io/cct")
10
 
11
+ MODEL = "digitalepidemiologylab/covid-twitter-bert-v2"
12
+ tokenizer = AutoTokenizer.from_pretrained(MODEL)
13
+
14
  def bert_encode(tokenizer,data,maximum_length) :
15
  input_ids = []
16
  attention_masks = []
 
32
 
33
  return np.array(input_ids),np.array(attention_masks)
34
 
35
+ # train_encodings = tokenizer(train_texts, truncation=True, padding=True)
36
+ # test_encodings = tokenizer(test_texts, truncation=True, padding=True)
37
+
38
 
 
 
39
 
 
 
 
40
 
41
  def get_news(input_text):
42
+ sentence_length = 110
43
+ train_input_ids,train_attention_masks = bert_encode(tokenizer,input_text,sentence_length)
44
+ return m([train_input_ids,train_attention_masks])
45
 
46
  iface = gr.Interface(fn = get_news,
47
  inputs = "text",