Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from PIL import Image | |
MODEL_1 = "google/vit-base-patch16-224" | |
MIN_ACEPTABLE_SCORE = 0.1 | |
MAX_N_LABELS = 5 | |
MODEL_2 = "nateraw/vit-age-classifier" | |
MODELS = [ | |
"google/efficientnet-b0", | |
"google/vit-base-patch16-224", #Classifição geral | |
"nateraw/vit-age-classifier", #Classifição de idade | |
"microsoft/resnet-50", #Classifição geral | |
"Falconsai/nsfw_image_detection", #Classifição NSFW | |
"cafeai/cafe_aesthetic", #Classifição de estética | |
"microsoft/resnet-18", #Classifição geral | |
"microsoft/resnet-34", #Classifição geral escolhida pelo copilot | |
"microsoft/resnet-101", #Classifição geral escolhida pelo copilot | |
"microsoft/resnet-152", #Classifição geral escolhida pelo copilot | |
"microsoft/swin-tiny-patch4-window7-224",#Classifição geral | |
"-- Reinstated on testing--", | |
"microsoft/beit-base-patch16-224-pt22k-ft22k", #Classifição geral | |
"-- New --", | |
"-- Still in the testing process --", | |
"facebook/convnext-large-224", #Classifição geral | |
"timm/resnet50.a1_in1k", #Classifição geral | |
"timm/mobilenetv3_large_100.ra_in1k", #Classifição geral | |
"trpakov/vit-face-expression", #Classifição de expressão facial | |
"rizvandwiki/gender-classification", #Classifição de gênero | |
"#q-future/one-align", #Classifição geral | |
"LukeJacob2023/nsfw-image-detector", #Classifição NSFW | |
"vit-base-patch16-224-in21k", #Classifição geral | |
"not-lain/deepfake", #Classifição deepfake | |
"carbon225/vit-base-patch16-224-hentai", #Classifição hentai | |
"facebook/convnext-base-224-22k-1k", #Classifição geral | |
"facebook/convnext-large-224", #Classifição geral | |
"facebook/convnext-tiny-224",#Classifição geral | |
"nvidia/mit-b0", #Classifição geral | |
"microsoft/resnet-18", #Classifição geral | |
"microsoft/swinv2-base-patch4-window16-256", #Classifição geral | |
"andupets/real-estate-image-classification", #Classifição de imóveis | |
"timm/tf_efficientnetv2_s.in21k", #Classifição geral | |
"timm/convnext_tiny.fb_in22k", | |
"DunnBC22/vit-base-patch16-224-in21k_Human_Activity_Recognition", #Classifição de atividade humana | |
"FatihC/swin-tiny-patch4-window7-224-finetuned-eurosat-watermark", #Classifição geral | |
"aalonso-developer/vit-base-patch16-224-in21k-clothing-classifier", #Classifição de roupas | |
"RickyIG/emotion_face_image_classification", #Classifição de emoções | |
"shadowlilac/aesthetic-shadow" #Classifição de estética | |
] | |
def classify(image, model): | |
classifier = pipeline("image-classification", model=model) | |
result= classifier(image) | |
return result | |
def save_result(result): | |
st.write("In the future, this function will save the result in a database.") | |
def print_result(result): | |
comulative_discarded_score = 0 | |
for i in range(len(result)): | |
if result[i]['score'] < MIN_ACEPTABLE_SCORE: | |
comulative_discarded_score += result[i]['score'] | |
else: | |
st.write(result[i]['label']) | |
st.progress(result[i]['score']) | |
st.write(result[i]['score']) | |
st.write(f"comulative_discarded_score:") | |
st.progress(comulative_discarded_score) | |
st.write(comulative_discarded_score) | |
def main(): | |
st.title("Image Classification") | |
st.write("This is a simple web app to test and compare different image classifier models using Hugging Face's image-classification pipeline.") | |
st.write("From time to time more models will be added to the list. If you want to add a model, please open an issue on the GitHub repository.") | |
st.write("If you like this project, please consider liking it or buying me a coffee. It will help me to keep working on this and other projects. Thank you!") | |
# Buy me a Coffee Setup | |
bmc_link = "https://www.buymeacoffee.com/nuno.tome" | |
# image_url = "https://helloimjessa.files.wordpress.com/2021/06/bmc-button.png?w=150" # Image URL | |
image_url = "https://i.giphy.com/RETzc1mj7HpZPuNf3e.webp" # Image URL | |
image_size = "150px" # Image size | |
#image_link_markdown = f"<img src='{image_url}' width='25%'>" | |
image_link_markdown = f"[]({bmc_link})" | |
#image_link_markdown = f"[]({bmc_link})" # Create a clickable image link | |
st.markdown(image_link_markdown, unsafe_allow_html=True) # Display the image link | |
# Buy me a Coffee Setup | |
#st.markdown("<img src='https://helloimjessa.files.wordpress.com/2021/06/bmc-button.png?w=1024' width='15%'>", unsafe_allow_html=True) | |
input_image = st.file_uploader("Upload Image") | |
shosen_model = st.selectbox("Select the model to use", MODELS) | |
if input_image is not None: | |
image_to_classify = Image.open(input_image) | |
st.image(image_to_classify, caption="Uploaded Image") | |
if st.button("Classify"): | |
image_to_classify = Image.open(input_image) | |
classification_obj1 =[] | |
#avable_models = st.selectbox | |
classification_result = classify(image_to_classify, shosen_model) | |
classification_obj1.append(classification_result) | |
print_result(classification_result) | |
save_result(classification_result) | |
if __name__ == "__main__": | |
main() |